
March	2017		

	

	

ALTREONIC	
"FROM	
DEEP	
SPACE	TO	
DEEP	SEA"

QOS		AND	REAL	TIME	
REQUIREMENTS	 	
FOR	EMBEDDED		
MANY-	AND	MULTICORE	SYSTEMS	
-	UPDATED

Systems Engineering
for Smarties

The	concept

So6ware	inside

 

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	2

Published	by:	
Altreonic	NV	

Gemeentestraat	61A	B1	
B3210	Linden	

Belgium	

www.altreonic.com	
info.request	(@)	altreonic.com	

March	-	2017	
Copyright	Altreonic	NV	

Author:	Eric	Verhulst,	Bernhard	Sputh	

Contact:	goedelseries@altreonic.com

2nd	publica1on	in	the	Gödel	Series:	

Systems Engineering for Smarties©

This	publica1on	is	published	under	a		

Crea1ve	Commons	APribu1on-NonCommercial-ShareAlike	3.0	Unported	License.	

	

mailto:goedelseries@altreonic.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
mailto:goedelseries@altreonic.com

QoS	and	Real	Time	Requirements	for	
Embedded	Many-	and	Multicore	Systems	

Table	of	Contents	
1. IntroducDon	 6	...

2. Background	of	VirtuosoNext	 7	...

3. Early	requirements	derived	from	the	Virtuoso	RTOS	 8	...

4. Real-Dme	embedded	programming	 9	..
4.1. Why	real-1me?	 9	..
4.2. Why	a	simple	loop	is	oXen	not	enough	 10	...
4.3. Superloops		and	sta1c	scheduling	 11	...
4.4. Rate	Monotonic	Analysis	 13	...
4.5. The	applica1on	of	RMA	in	VirtuosoNext	 15	...
4.6. The	issue	of	priority	inversion	and	its	inadequate	solu1on	 16	...
4.7. Distributed	priority	inheritance	in	VirtuosoNext	 18	...
4.8. Next	genera1on	requirements	 20	..

5. An	approach	for	QoS	resource	scheduling	 23	...
5.1. Formalising	Quality	of	Service	(QoS)	domains	 23	...
5.2. Isola1on	for	error	propaga1on	preven1on	 25	..
5.3. The	trade-offs	involved	when	selec1ng	the	resource	quantum	 26
5.4. Maintaining	maximum	QoS	by	graceful	degrada1on	and	recovery	 27

6. Hard	real-Dme	and	caching	on	advanced	mulD-core	chips	 28	...
6.1. Effects	of	caching	on	predictable	1mings	 28	..
6.2. QoS	and	ARRL	 33	..

7. ParDDoning	and	separaDon	of	concerns	for	embedded	real-Dme	 35
7.1.What	does``real-1me''	mean?	 35	..
7.2.What	does	``priority''	mean?	 35	..
7.3.Real-1me	and	priority	on	modern	mul1-core	SoCs	 36	..
7.4.When	is	an	RTOS	really	real-1me?	 37	..
7.5.Resource	blocking,	Priority	Inheritance	and	fairness	policies	 38	...
7.6.Complexity	dictates	orthogonality,	for	logic	and	for	1me}	 38	...
7.6.1.Can	hard-real	1me	be	relaxed	without	becoming	too	soX?	 38	..
7.6.2.If	you	can't	change	the	hardware,	adapt	the	programming	model}	 39

7.6.3.		Implementa1on	in	VirtuosoNext	 40	...
7.7.Par11oning	for	safety	and	security	 41	..
7.7.1.Space	Par11oning	 41	..
7.7.2.Time	Par11oning	 42	...
7.7.3.Current	prac1ce:	ARINC-653	 42	..
7.7.1.ARM-Cortex-M3	 42	...
7.7.2.ARM-Cortex-A9	 43	..
7.7.3.Freescale	T2080	 43	...
7.7.1.Texas	Instruments	TMS320C6678	 43	..

7.1.Benchmarks	on	single	and	mul1-core	targets	 43	..

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	3

7.1.1.Semaphore	Loop	Times	 43	...
7.1.1.Interrupt	Handling	Latency	 44	..
7.1.2.Code	Size	 45	..
7.1.3.Mul1-core	SoCs,	T2080	vs	TMS320C6678}	 46	..
7.1.4.The	ul1mate	real-1me	stress	test}	 46	...
7.1.5.The	impact	of	mul1-core	communica1on}	 47	..

7.2.Conclusions	and	recommenda1ons	for	mul1-core	SoC	design	 47	..

8. Final	conclusions	 49	...

9. References	 50	..
9.1. Further	reading	 50	..
9.2. Acknowledgements	 51...

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	4

Preface	
This	 booklet	 is	 the	 second	 of	 the	Gödel*	 Series,	 with	 the	 sub1tle	 "Systems	 Engineering	 for	
Smar1es".	The	aim	of	this	series	 is	to	explain	in	an	accessible	way	some	important	aspects	of	
trustworthy	systems	engineering	with	each	booklet	covering	a	specific	domain.		

The	 first	 publica1on	 is	 en1tled	 "Trustworthy	 Systems	 Engineering	 with	 GoedelWorks"	 and	
explains	 the	high	 level	 framework	Altreonic	 applies	 to	 the	domain	of	 systems	engineering.	 It	
discusses	a	generic	model	that	applies	to	any	process	and	project	development.	It	explains	the	
16	necessary	but	sufficient	concepts.	This	model	was	applied	to	the	import	of	the	project	flow	
of	the	ASIL	(Automo1ve	Safety	Integrity	Level)	project	of	Flanders's	Drive	whereby	a	common	
process	 was	 developed	 based	 on	 the	 IEC-61508,	 IEC-62061,	 ISO-DIS-26262,	 ISO-13849,	 ISO-
DIS-25119	 and	 ISO-15998	 safety	 standards	 covering	 the	 automo1ve	 on-highway,	 off-highway	
and	machinery	domain.	

The	 second	 publica1on	 is	 en1tled	 “QoS	 and	 Real	 Time	 Requirements	 for	 Embedded	Many-	
and	MulDcore	Systems”.	 It	explains	 the	principles	behind	 real-1me	scheduling	 for	embedded	
real-1me	 systems	 whereby	 mee1ng	 the	 real-1me	 constraints	 oXen	 is	 a	 top	 level	 safety	
requirement.	 What	 dis1nguishes	 this	 booklet	 is	 that	 it	 also	 deals	 with	 systems	 that	 have	
mul1ple	processors	(on-chip	or	connected	over	a	network).	The	complexity	and	challenges	on	
such	 targets	 mean	 that	 the	 system	 must	 now	 schedule	 all	 available	 resources,	 such	 as	
communica1on	backbones,	peripherals	and	energy.	In	combina1on	with	new	func1onal	needs	
this	results	in	new	approaches	focusing	on	the	Quality	of	Service	and	requiring	specific	support	
from	the	hardware.	

The	 name	 of	 Gödel	 (as	 in	 GoedelWorks)	 was	 chosen	 because	 Kurt	 Gödel's	 theorems	 have	
fundamentally	altered	 the	way	mathema1cs	and	 logic	was	approached,	now	almost	80	years	
ago.	The	aPen1ve	reader	will	also	recognise	Heisenberg,	Einstein	and	WiPgenstein	on	the	front	
page.	What	all	these	great	thinkers	really	did	was	to	create	clarity	in	something	that	looked	very	
complex.	And	while	it	required	a	lot	of	hard	thinking	on	their	side,	it	resulted	in	a	very	concise	
and	elegant	theorem	or	formula.	One	can	even	say	that	any	domain	or	subject	that	s1ll	 looks	
complex	 is	 really	 a	 problem	 domain	 that	 is	 not	 yet	 fully	 understood.	 We	 hope	 to	 achieve	
something	similar,	be	it	less	revolu1onary,	for	the	systems	engineering	domain	and	it's	always	
good	to	have	intellectual	beacons	to	provide	guidance.		

The	Gödel	Series	publica1ons	are	freely	downloadable	from	our	web	site.	Further	1tles	in	the	
planning	 will	 cover	 topics	 of	 Real-Time	 programming,	 Formal	 Methods	 and	 Safety	 Analysis	
methods.	 Copying	of	 content	 is	 freely	 permiPed	provided	 the	 source	 is	 referenced.	As	 these	
booklets	 will	 be	 updated	 based	 on	 feedback	 from	 our	 readers,	 feel	 free	 to	 contact	 us	 at	
goedelseries	@	altreonic.com.	

Eric	Verhulst,	

CEO/CTO	Altreonic	NV	

	*:	pronuncia1on	[ˈkʊʁt	ˈɡøːdəl]	(� 	listen)  

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	5

http://en.wikipedia.org/wiki/Wikipedia:IPA_for_German

1. Introduction	

In	 this	 booklet	 we	 discuss	 the	 requirements	 and	
specifica1ons	for	a	Real-Time	Opera1ng	System	(RTOS)	
from	 the	 point	 of	 view	 of	 its	 capabili1es	 to	 support	
embedded	 applica1ons	 in	mee1ng	 safety,	 par1cularly	
real-Dme	 requirements	 on	 modern	 many/mulDcore	
systems.	 	

As	 the	 booklet	 is	 related	 to	 a	 mulDprocessor	 and	
distributed	 real-Dme	 operaDng	 system	 this	 is	 rather	
unique	as	most	RTOS	are	designed	for	single	processor	
systems	 and	 if	 not,	 they	 assume	 a	 shared	 memory	
architecture.	In	such	cases,	the	RTOS	is	only	concerned	
with	 the	 local	 scheduling	 on	 each	 processor	 with	
interprocessor	 synchronisa1on	 and	 communica1on	
being	 leX	 to	 a	 middleware	 layer.	 In	 view	 of	 modern	
many/mulDcore	 architectures	 this	 is	 no	 longer	
adequate	 as	 resources	 are	 globally	 shared	 on	 the	
highly	 integrated	 chip	 and	 any	 ac1vity	 on	 any	
processor	has	a	poten1al	impact	on	the	scheduling	on	
another	 processor.	 We	 outline	 how	 simple	 real-1me	
requirements	are	addressed	by	using	sta1c	scheduling	
schemes.	 While	 predictable	 they	 are	 prone	 to	
catastrophic	 failure,	 which	 in	 the	 case	 of	 the	 highly	
concentrated	 func1onality	and	 performance	 in	 many/
mul1core	 chips	 can	 be	 catastrophic	 for	 the	 whole	
system.	 Moreover,	 their	 behaviour	 is	 increasingly	
sta1s1cal	 in	 nature,	 hence	 soX	 real-1me	 rather	 than	
hard	 real-1me.	 We	 show	 how	 a	 more	 dynamic	
approach	 can	 make	 bePer	 use	 of	 the	 available	
resources	 and	 can	 allow	 fault	 containment	 as	well	 as	 recovery	 from	errors.	 This	 extends	 the	
tradi1onal	real-1me	requirements	into	a	wider	concept	that	we	call	Quality	of	Service	(QoS).	 	

In	 order	 to	 meet	 QoS	levels,	 system	components	(on-chip	or	 distributed)	 must	meet	certain	
criteria.	We	 call	 this	the	Assured	Reliability	and	Resilience	 Level	 (ARRL)	and	link	 it	with	the	
QoS.	 We	 use	 the	formally	developed	 network-centric	 VirtuosoNext™	as	 a	 reference.	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	6

real-time	

adj	

(Electronics	&	Computer	
Science	/	Computer	
Science)	denoDng	or	
relaDng	to	a	data-
processing	system	in	which	
a	computer	receives	
constantly	changing	data,	
such	as	informaDon	relaDng	
to	air-traffic	control,	travel	
booking	systems,	etc.,	and	
processes	it	sufficiently	
rapidly	to	be	able	to	control	
the	source	of	the	data	

Collins English
Dictionary – Complete
and Unabridged ©	
HarperCollins	Publishers	
1991,	1994,	1998,	2000,	
2003	

http://www.thefreedictionary.com/_/misc/HarperCollinsProducts.aspx?English
http://www.thefreedictionary.com/_/misc/HarperCollinsProducts.aspx?English
http://www.thefreedictionary.com/_/misc/HarperCollinsProducts.aspx?English
http://www.thefreedictionary.com/_/misc/HarperCollinsProducts.aspx?English
http://www.thefreedictionary.com/_/misc/HarperCollinsProducts.aspx?English
http://www.thefreedictionary.com/_/misc/HarperCollinsProducts.aspx?English

2. Background	of	VirtuosoNext	

The	 ini1al	 purpose	 for	 developing	 VirtuosoNext	 [1]	 was	 to	 provide	 a	 soX-	 ware	 run1me	
environment	 suppor1ng	 a	 coherent	 and	 unified	 systems	 engineering	methodology	 based	 on	
“InteracDng	EnDDes”,	currently	further	developed	and	commercialised	by	Altreonic	[2].	 In	this	
methodology	requirements	result	in	concrete	specifica1ons	that	are	fulfilled	in	the	architectural	
domain	 by	 concrete	 “en11es”	 or	 sets	 of	 en11es.	 En11es	 can	 be	 decomposed	 as	 well	 as	
grouped	 to	 fulfill	 the	 specifica1ons.	 In	order	 to	do	 so,	we	also	need	 to	define	 “interac1ons”,	
basically	the	ac1ons	that	coordinate	the	en11es.	In	prac1ce	these	interac1ons	can	be	seen	as	
protocols	whereby	the	en11es	synchronise	and	exchange	data.	

Interac1ons	and	en11es	are	first	of	all	abstrac1ons	used	during	the	modelling	phase.	As	such,	a	
specified	 func1onality	can	first	be	simulated	as	part	of	a	simula1on	model,	cri1cal	proper1es	
can	be	formally	verified	using	formal	techniques	and	finally	an	implementa1on	architecture	can	
be	defined	using	the	architectural	modelling	tools	of	the	target	 domain.	In	our	case	we	try	to	
keep	 the	 seman1cs	 unified	 from	 early	 requirements	 1ll	 implementa1on.	 In	 the	 targeted	
embedded	 systems	 domain	 this	 means	 that	 the	 final	 architecture	 is	 likely	 a	 concurrent	 or	
parallel	 soXware	 program	 running	 on	 one	 or	 more	 programmable	 processors.	 Some	
func1onality	 might	 be	 implemented	 on	 specific	 hardware	 en11es.	 Such	 en11es	 will	 be	
integrated	in	the	input	or	output	subsystem	or	will	be	designed	as	co-processing	blocks.	In	most	
cases	these	hardware	en11es	will	be	controlled	from	a	soXware	driver	running	on	a	processor.	

In	 an	 embedded	 system,	 and	 in	 most	 systems,	 two	 addi1onal	 systems	 must	 be	 taken	 into	
considera1on.	The	first	one	is	the	“environment”	in	which	the	embedded	system	is	placed.	This	
will	 oXen	 generate	 inputs	 to	 the	 system	 or	 accept	 outputs	 from	 it	 or	 it	 will	 influence	 the	
opera1ng	condi1ons,	not	necessarily	 in	a	 fully	predictable	way.	A	second	system	that	 is	oXen	
present	 is	 the	 “operator”,	 who	 also	 will	 generate	 inputs	 or	 process	 the	 outputs.	 If	 this	 is	 a	
human	 operator,	 we	 have	 to	 deal	 with	 an	 en1ty	 whose	 behaviour	 is	 not	 necessarily	 always	
predictable.	OXen	the	“operator”	might	be	another	embedded	system	and	then	the	behaviour	
should	 be	 more	 predictable,	 at	 least	 if	 well	 specified.	 However,	 systems	 are	 layered.	 If	 we	
“open”	the	embedded	system	or	consider	the	system	under	development	with	its	environment	
and	its	operator	as	a	new	system,	we	can	see	that	each	system	can	be	a	component	in	a	larger	
system	 and	 oXen	 it	will	 be	 composed	 itself	 of	 “subsystem	 components”,	 resul1ng	 in	 specific	
requirements	 in	 order	 to	 reuse	 them.	 For	 this	 paper	 we	 stay	 at	 the	 level	 where	 such	
components	are	programmable	processors	or	soXware	implemented	func1ons.	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	7

Figure	1	The	context	of	systems	engineering

The	use	of	a	concurrent	(parallel	by	extension)	programming	paradigm	embodied	in	an	RTOS	is	
a	natural	consequence	of	the	interac1ng	en11es	paradigm.	Programming	in	a	concurrent	way	
implies	that	the	abstract	en11es	(that	fulfill	specifica1ons)	are	mapped	onto	RTOS	“tasks”	(also	
called	 processes	 or	 threads	 in	 the	 literature)	 and	 that	 interac1ons	 are	mapped	 onto	 services	
used	by	 the	 tasks	 to	 synchronize	 and	 to	 communicate.	 In	 principle,	 this	 abstract	model	maps	
equally	well	to	hardware	as	to	soXware	but	we	focus	here	on	the	soX-	ware.	The	target	domain	
ranges	 from	 small	 single	 chip	 micro-controllers	 over	 mul1-core	 CPUs	 to	 widely	 distributed	
heterogeneous	systems	that	include	support	for	legacy	technology.	The	goal	is	to	program	such	
systems	in	a	transparent	way,	independently	of	the	processor	or	communica1on	medium	used.	

3. Early	requirements	 derived	from	the	 Virtuoso	RTOS	

Precursor	 to	 VirtuosoNext	 were	 OpenComRTOS	 and	 the	 Virtuoso	
RTOS	[3].	It	had	its	origin	in	the	pioneering	INMOS	transputer	[4,5],	a	
par1al	 hardware	 implementa1on	 of	 Hoare’s	 CommunicaDng	
SequenDal	 Processes	 (CSP)	 process	 algebra	 [6].	 Later	 Virtuoso	was	
ported	 to	 tradi1onal	 processors	 but	 mostly	 parallel	 DSPs.	 The	
transputer	 was	 a	 rather	 unusual	 RISC	 like	 processor	 with	 unique	
support	for	on-	chip	concurrency	and	inter-processor	communica1on.	
On-chip	 it	 had	 a	 scheduler	 with	 two	 priority	 levels,	 each	 level	

suppor1ng	round-robin	scheduling	between	the	compile	1me	generated	processes.	It	also	had	
hardware	support	for	 inter-	process	communica1on	and	synchroniza1on	using	”channels”.	For	
distributed,	embedded	real-1me	applica1ons,	it	raised	two	major	issues:	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	8

Figure	2	InteracDng	EnDDes	mapped	onto	RTOS	tasks	and	services

• Two	 levels	of	priority	are	 not	 enough	 for	hard	real-1me	applica1ons.	Typically	at	 least	
32	 levels	 of	 priority	 are	 needed	 with	 full	 support	 for	 pre-emp1on	 and	 priority	
inheritance.	

• Topology	 independence:	 although	 the	 transputer	 had	 interprocessor	 links,	 the	
communica1on	between	processors	had	to	be	manually	routed	at	the	applica1on	level.	
The	issue	is	here	mostly	one	of	maintenance.	Every	liPle	change	in	the	topology	could	
result	in	major	reprogramming	efforts.	

Above	 observa1ons	 resulted	 in	 the	 adop1on	 in	 the	 Virtuoso	RTOS	of	 following	 architectural	
principles:	

• Use	of	255	levels	of	priority	with	 full	 pre-emp1on	capability.	

• Development	of	 tradiDonal	RTOS	services	like	events,	semaphores,		fifos,	mailboxes,	
resource	 and	 memory	maps.	

• Use	of	command	 and	 data	 packets	 to	provide	 for	system	 level	communica1on.	

• Use	of	system	wide	 idenDfiers	and	 no	 local	 pointers	to	 provide	 for	 topology	
independent	programming.	

• Packets	carry	a	 priority	inherited	 from	 the	 genera1ng	task.	

• Support	for	priority	inheritance	 in	 the	 scheduler.	

4. Real-time	embedded	programming	

While	 most	 programming	 is	 concerned	 with	 performance	 (oXen	 expressed	 in	 terms	 of	
achievable	 throughput),	 real-1me	 is	 then	 oXen	 equated	 to	 “fast	 enough”.	 In	 the	 embedded	
domain	however,	the	system	will	oXen	interact	with	the	physical	world	whereby	stringent	1me	
requirements	must	be	met	or	the	system	can	fail.	In	
such	 systems,	 the	 reac1ve	 behaviour	 is	 most	
important	and	must	always	be	achieved	in	addi1on	
to	 the	 logical	 correctness	 of	 the	 applica1on.	 Such	
systems	 are	 oXen	 called	 “hard”	 real-Dme	 in	
contrast	with	“so6”	real-Dme	systems	whereby	the	
1ming	proper1es	are	sta1s1cal	in	nature.	

4.1. Why	real-time?	
It	 can	 be	 argued	 that	 an	 architectural	 paradigm	
based	 on	 en11es	 and	 interac1ons	 does	 not	 need	
any	 no1on	 of	 real-1me.	 Indeed,	 the	 temporal	
properDes	can	be	considered	as	mostly	orthogonal	
to	 the	 “logical”	 behaviour	 of	 a	 system.	 In	 the	
embedded	 domain	 (and	 most	 of	 the	 systems	 we	
use	have	 embedded	aspects),	we	 are	dealing	with	
real-world	interac1ons	and	1me	is	part	of	it.	Signals	
that	 the	 embedded	 system	must	 process	 arrive	 in	
real-1me	 and	must	 be	 dealt	 with	 before	 the	 next	
set	 of	 signals	 arrives.	 Similarly,	 the	 embedded	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	9

quality of service
definition

communications, networking

  
(QoS) The performance
properties of a network
service, possibly
including throughput, transit
delay, priority.

Some protocols allow
packets or streams to
include QoS requirements.

http://dictionary.reference.com/browse/throughput
http://dictionary.reference.com/browse/transit%2520delay
http://dictionary.reference.com/browse/transit%2520delay
http://dictionary.reference.com/browse/priority
http://dictionary.reference.com/browse/protocols
http://dictionary.reference.com/browse/packets
http://dictionary.reference.com/browse/streams
http://dictionary.reference.com/browse/throughput
http://dictionary.reference.com/browse/transit%2520delay
http://dictionary.reference.com/browse/transit%2520delay
http://dictionary.reference.com/browse/priority
http://dictionary.reference.com/browse/protocols
http://dictionary.reference.com/browse/packets
http://dictionary.reference.com/browse/streams

system	will	act	on	it	surroundings	and	real-1me	requirements	apply.	Implicitly,	we	assume	here	
that	 sampling	 theory	 is	 applied.	 Sampling	 theory	 dictates	 that	we	 should	 at	 least	 sample	 at	
twice	the	bandwidth	of	the	signal.	Similarly,	when	we	apply	output	or	control	signals	this	must	
also	be	done	with	a	rate	at	least	equal	to	twice	the	bandwidth.	If	the	controlled	subsystem	has	
a	mechanical	mass	and	its	proper1es	such	that	iner1a	determines	the	dynamic	behaviour,	we	
similarly	must	take	into	account	its	1me	constant.	Some1mes,	the	output	1ming	can	be	rather	
demanding.	An	example	is	audio	processing.	Our	human	ear	is	very	sensi1ve	to	phase-shiXs	so	
that	 even	 when	 the	 bandwidth	 requirements	 are	 met,	 the	 jiPer	 requirements	 are	 stringent	
enough	that	hardware	support	might	be	needed.	

The	purpose	of	an	RTOS	is	to	give	the	engineer	the	means	to	meet	such	real-1me	requirements	
at	the	same	1me	as	he	is	mee1ng	the	architectural	ones	(as	explained	before:	mapping	abstract	
en11es	 into	 concrete	 tasks).	 Timely	 behaviour	 is	 then	 a	 property	 of	 the	 tasks	 in	 a	 specific	
execu1on	context.	This	allows	designing	and	verifying	a	real-1me	system	without	having	to	look	
into	the	details	of	the	algorithms	executed	by	the	tasks.	The	only	informa1on	needed	is	what	
resources	the	tasks	use	(e.g.	1me	in	the	form	of	processing	cycles	and	memory).	Execu1ng	the	
task	on	another	processor	does	not	change	the	algorithm,	 just	 the	1ming	and	memory	used.	
Similarly,	a	concurrent	program	in	itself	doesn’t	need	to	be	real-1me	(it’s	a	maPer	of	defining	
the	parameters	differently).	However,	it	is	very	convenient	that	a	concurrent	program	that	was	
designed	 to	 handle	 real-1me,	 can	 also	 handle	 Dme-independent	 programming,	 e.g.	 for	
simula1on	purposes.	The	opposite	is	oXen	not	true.	

4.2. Why	a	 simple	 loop	is	 often	not	 enough	
It	 is	 useful	 for	 the	remainder	of	 this	paper	to	 present	 in	 short	our	 view	 on	 embedded	real-
1me	programming.	 The	 reader	 can	 find	 a	 wide	 range	of	 literature	 related	 to	 real-1me	and	
embedded	programming	elsewhere	 if	he	wants	 to	 inves1gate	in	 more	 depth.	

Let’s	 start	 with	 the	 term	 “real-Dme”.	 The	 intui1ve	 no1on	 of	 real-1me	 is	 oXen	 a	 subjec1ve	
one	 using	terms	like	 “fast”	or	 “fast	enough”.	Such	 systems	can	 oXen	 be	considered	 as	“so6”	
real-Dme,	 because	 the	 real-1me	 criteria	 are	 not	 clearly	 defined	 and	 are	 oXen	 sta1s1cal.	
However,	 when	 the	system	that	 must	be	 controlled	 is	 physical,	oXen	 the	deadlines	will	 be	
absolute.	An	 example	of	 a	 soX	 real-1me	 system	 is	 a	 video	 system.	 The	processing	 rate	 is	
determined	 by	the	 frame	 rate,	oXen	 a	minimum	of	25	Hz	 and	 determined	by	 the	 minimum	
rate	needed	for	 the	eye	 to	perceive	the	frames	as	 a	 con1nuous	 image.	The	human	eye	 will	
itself	filter	out	late	arriving	frames	and	can	even	tolerate	a	missing	frame.	Even	more	soX	real-
1me	are	on-line	transac1on	systems.	Users	expect	them	to	respond	with	e.g.	one	second,	but	
accept	 that	 occasionally	 it	 takes	 tens	 of	 seconds.	 Of	 course,	 if	 a	 soX	 real-1me	 applica1on	
repeatedly	violates	 the	expected	 real-1me	proper1es	 the	Quality	of	Service	will	 suffer	and	at	
some	point	that	will	be	considered	a	failure	as	well.	

On	the	other	hand	hard	real-1me	systems	that	 miss	deadlines	can	cause	physical	 damage	or	
worse,	 can	 result	 in	 deadly	 consequences	 if	 the	 applica1on	 is	 safety	 criDcal,	 even	 when	a	
“fail-safe”	 mode	 has	 been	 designed	 in.	 Typical	 examples	 are	 dynamic	 posi1oning	 systems,	
machine	 control,	drive-by-wire	and	fly-by-wire	 systems.	In	 these	cases	 oXen	the	term	 	”hard	
real-Dme”	 is	 used	 to	differen1ate.	 From	 the	point	 of	 view	 of	 the	 requirements,	 hard	 real-

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	10

1me	 means	 ”predictable”	 and	 ”guaranteed”	 and	 a	 single	 deadline	 miss	 is	 considered	 a	
failure	whether	its	 design	 can	 tolerate	some	 devia1ons	or	 not.	

Two	conclusions	can	be	drawn.	First	of	 all,	a	hard	real-1me	system	can	provide	 “soX”	real-1me	
behaviour,	 but	 the	 opposite	 is	 not	 true.	 Secondly,	 when	 safety	 cri1cal,	 a	 hard	 real-1me	
system	must	remain	predictable	 even	in	the	presence	of	 faults.	In	 the	worst	case	 it	 could	 fail,	
but	 the	 probability	 from	 this	 happening	 must	 be	 low	 enough	 to	 be	 considered	 an	
acceptable	risk.	

Strictly	speaking,	no	 RTOS	is	 needed	to	 achieve	 real-1me	behaviour	in	 an	embedded	 system.	
It	 all	depends	 on	 the	 complexity	 of	the	 applica1on	and	 on	 the	addi1onal	 requirements.	E.g.	
if	 the	 system	 only	 has	 to	 periodically	 read	 samples	 from	 a	 sensor,	 do	 some	 processing	
and	transmit	 the	processed	 values,	 a	 simple	loop	that	 is	 executed	forever	will	 be	sufficient.	
Sources	of	 complexity	are	for	example:	

• Pu�ng	the	 processor	 to	 sleep	 in	 between	processing	 to	 conserve	 energy.	

• Managing	several	 100’s	of	sensors.	

• Execu1ng	a	 high	 number	of	other	tasks	with	 different	1me	 constraints.	

• Detec1ng	a	 failure	 in	 the	 sensor	 circuit.	

• Detec1ng	a	 fault	in	 the	 processor.	

Such	requirements	are	difficult	if	not	impossible	to	handle	when	a	simple	polling	loop	is	used,	
but	as	most	processors	will	have	support	for	interrupt	handling,	the	developer	can	separate	the	
I/O	 from	 the	 processing.	 This	 essen1ally	 means	 that	 most	 embedded	 systems	 will	 have	 a	
“hardware”	 level	of	priori1es	and	a	 “soXware”	 level	of	priori1es.	The	highest	priority	 level	 is	
provided	 by	 the	 Interrupt	 Service	 RouDnes	 that	 effec1vely	 interrupts	 the	 lower	 priority	
(background)	 loop.	 However,	 the	 extra	 func1onali1es	 listed	 above	 might	 already	 require	
mul1ple	 interrupts	 and	 priori1es.	 The	 sleep	mode	 of	 the	 processor	 requires	 that	 the	 circuit	
generates	an	interrupt	to	wake	up	the	processor	and	a	1mer	suppor1ng	a	1me-	out	mechanism	
might	be	needed	 for	detec1ng	a	 failure.	Also	 the	 transmission	of	 the	processed	values	might	
require	some	interrupts.	Hence	the	ques1on	arises	how	each	interrupt	must	be	priori1sed.	In	
the	simple	example	given,	this	is	not	much	of	an	issue	as	long	as	we	assume	that	the	system	is	
periodic	 and	 always	 has	 spare	 1me	 between	 samples.	 What	 happens	 however	 if	 mul1ple	
interrupt	 sources	 are	 present	 and	 if	 they	 can	 be	 triggered	 at	 any	 moment	 in	 1me,	 even	
simultaneously?	

4.3. Superloops		and	 static	 scheduling	
When	 mul1ple	 interrupt	 sources	 are	 present,	 a	 simple	 solu1on	 is	 to	 distribute	 interrupt	
handling	and	processing	 over	 the	available	 interrupt	 service	 rou1nes	and	 the	 main	 polling	
loop.	 The	 separaDon	 between	 “handling”	 and	 “processing”	 of	 interrupts	 is	 essen1al	
because	interrupts	 will	 be	 disabled	when	 an	 Interrupt	Service	 Rou1ne	is	 entered	and	worse,	
the	hardware	might	be	 designed	in	 such	a	 way	 that	 the	data	 is	 only	 available	 for	 a	 short	
period	 of	 1me.	 Hence,	 while	 an	 interrupt	 is	 being	 handled,	 the	 hardware	 must	 have	 a	
mechanism	for	 holding	arriving	 interrupts,	 else	 they	will	 be	 lost	 and	 in	 the	worst	case,	 the	
applica1on	can	 fail.	Therefore	interrupt	handling	should	 be	kept	 as	short	 as	possible.	 On	 the	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	11

other	 hand	 in	 the	 polling	 loop,	 the	 program	will	 repeatedly	 test	 for	 the	 presence	 of	the	
interrupt	and	 when	enabled	 execute	 the	 corresponding	 processing	 func1on.	

The	issue	is	that	such	tes1ng	and	processing	must	be	done	in	sequence	and	that	the	program	
cannot	 progress	 unless	 the	 interrupt	 has	 arrived.	 Hence,	 if	 all	 interrupts	 are	 to	 be	 seen	 and	
processed,	 a	 staDc	 schedule	 must	 be	 calculated	 and	 the	 peripheral	 hardware	 must	 be	
configured	to	be	compa1ble	with	it.	Such	a	schedule	is	not	necessarily	feasible,	e.g.	when	the	
arrival	 rates	 of	 the	 interrupts	 have	 a	 wide	 span	 and	 don’t	 follow	 a	 harmonic	 periodicity.	 In	
addi1on,	the	polling	will	waste	processing	cycles	that	could	be	used	for	useful	processing	and	
worst,	if	for	some	reason	the	interrupt	does	not	arrive,	the	whole	system	can	become	blocked.	
From	 a	 safety	 point	 of	 view,	 such	 a	 polling	 loop	 has	 no	 built-in	 graceful	 degradaDon.	 In	
addi1on,	even	when	no	errors	occur,	a	small	change	in	the	applica1on	can	result	in	the	need	to	

recalculate	the	whole	schedule	or	in	the	worst	case	can	result	in	the	applica1on	no	longer	being	
schedulable.	What	 we	 need	 is	 a	 separa1on	 of	 concerns.	 The	 logic	 of	 processing	 should	 be	
made	 independent	 of	 its	 behaviour	 in	 Dme.	 With	 a	 sequen1al	 loop	 (on	 a	 sequen1al	
processor),	 this	 is	 not	 possible	 because	 the	 state	 space	 is	 shared	 amongst	 all	 processing	
func1ons	and	in	addi1on	the	1me	behaviour	depends	on	the	temporal	behaviour	of	the	rest	of	
the	processing	 func1ons.	What	 is	needed	 is	 a	mechanism	 that	divides	 the	global	 state	 space	
into	local	state	spaces.	There	are	two	ways	to	achieve	this:	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	12

Figure	3	Superloop	scheduling	with	three	interrupt	sources

• DedicaDng	a	 processor	 to	 each	 “local”	 processing	 func1on.	
• Crea1ng	 a	 mechanism	that	 separates	the	state	spaces,	 even	 when	 executed	on	 the	

same	 processor.	

The	 first	 solu1on	 has	 as	 side-effect	 that	 interprocessor	 communica1on	 can	 now	 become	 an	
issue	(because	communica1on	media	are	also	shared	resources).	The	second	solu1on	creates	
the	concept	of	“virtualisaDon”,	in	essence	a	mechanism	whereby	each	local	processing	func1on	
has	 virtually	 access	 to	 the	 full	 state	 of	 the	 processor.	 Note	 that	 this	 is	 only	 really	 possible	
because	1me	is	allocated	to	each	virtual	state	space	and	this	essen1ally	means	that	to	meet	the	
real-1me	requirements	at	system	level,	this	alloca1on	of	1me	must	be	carefully	done	to	meet	
all	real-1me	constraints.	

The	 two	 solu1ons	 introduce	 both	 the	 no1on	 of	 “concurrency”,	 whether	 physical	 or	 virtual.	
Most	 real-1me	 applica1ons	 will	 however	 have	 “interacDons”	 (e.g.	 passing	 data	 or	
synchronisa1on	of	a	 state	 that	was	 reached)	between	 the	 local	 state	 spaces.	 In	 line	with	 the	
need	 for	 separa1on	 of	 concerns,	 we	 need	 a	mechanism	 that	 “virtualises”	 these	 interac1ons	
independently	of	whether	they	take	place	on	different	processors	or	on	the	same	processor.	

And	last	but	not	least,	while	we	separated	the	1me	behaviour	from	the	logical	behaviour,	hard	
real-1me	 systems	 s1ll	 need	 a	 mechanism	 for	 handling	 1me.	 This	 mechanism	 is	 called	
scheduling.	We	have	seen	a	sta1c	version	of	it	in	the	previous	sec1ons,	called	sta1c	scheduling.	
It	assumes	perfect	knowledge	about	the	system	when	it	is	built	and	assumes	that	the	system’s	
opera1ng	 parameters	 are	 sta1c	 and	will	 never	 change.	 As	 outlined,	 this	 is	 seldom	 the	 case,	
certainly	when	failure	condi1ons	are	taken	into	account.	In	general,	a	more	dynamic	scheduling	
mechanism	 is	preferred.	The	 scheduling	 can	be	based	on	a	measurement	of	1me	or	 on	 the	
1me	already	used.	The	most	widely	 used	mechanism	is	 based	on	 priori1es,	a	 ranking	of	 the	
processing	 func1ons	 based	 on	 an	 analysis	 that	 combines	 the	 periodicity	 and	 the	 rela1ve	
processing	load.	This	mechanism	is	called	Rate	Monotonic	Scheduling	(RMS).	VirtuosoNext	is	a	
RTOS	based	on	the	assump1on	that	a	Rate	Monotonic	Analysis	(RMA)	is	executed,	resul1ng	in	
a	system	wide	priority	ranking	of	the	scheduled	applica1on	func1ons.	Nevertheless,	the	design	
allows	for	the	implementa1on	of	different	scheduling	policies.	

4.4. Rate	 Monotonic	Analysis	
RMA	was	first	put	forward	in	1973	by	Liu	and	Layland	[7].	Although	it	doesn’t	solve	all	issues	it	
provides	a	good	framework	that	is	simple	and	most	of	the	1me	it	is	applicable.	The	algorithm	
states	that	given	N	tasks	with	a	fixed	workload	that	must	be	ac1ve	with	a	fixed	periodicity	(with	
the	beginning	of	the	next	period	being	considered	as	the	deadline	for	the	previous	period),	all	
deadlines	will	be	met	if	the	total	processor	workload	remains	below	a	value	of	69%	and	a	pre-
emp1ve	 scheduler	 is	 used	with	 each	 task	 receiving	 a	 priority	 that	 is	 higher	 if	 the	 task	 has	 a	
higher	periodicity.	The	upper	bound	of	69%	 is	obtained	for	an	 infinite	number	of	tasks.	For	a	
finite	number	of	tasks	and	especially	when	the	periods	are	harmonic,	the	upper	bound	can	be	a	
lot	higher,	oXen	even	observed	 to	be	above	95%.	Figure	4	 illustrates	RMA	scheduling	of	 two	
tasks.	In	general	RMA	defines	the	scheduleability	criterion	(on	a	single	processor)	as	follows: 

� 	
n

∑
j=1

(Cj /T j) ≤ U(n) = n . (2 1
n − 1)

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	13
Figure	3	Superloop	schedule	with	three	interrupt	sources

with:	

• Cj	being	 the	 worst	 case	 execu1on	1me	 of	taskj	;	
• Tj	being	 the	 execu1on	1me	 of	taskj	;	
• U	(n)	being	 the	 worst	 case	 u1lisa1on	with	 n	 tasks;	

	

Figure	4	Two	periodic	tasks	scheduled	with	RMA

According	to	the	equa1on	a	 system	with	one	 task	has	an	 u1lisa1on	 of	 1.0	 (U	(1)	 =	1.0).	 For	
an	 unlimited	number	of	tasks	the	 u1lisa1on	converges	 to	 0.69	(U	(∞)	=	0.69).	

In	prac1ce	the	results	of	the	first	RMA	algorithm	are	a	(pessimis1c)	approxima1on	and	rely	on	
some	assump1ons	that	are	seldom	met	in	real	applica1ons.	For	example,	all	tasks	are	assumed	
to	be	independent	(hence	they	all	are	ac1vated	on	independent	events	and	do	not	synchronise	
or	 communicate	 with	 other	 tasks,	 nor	 do	 they	 share	 any	 resources).	 Also	 task	 ac1va1on	 is	
assumed	to	be	 instantaneous	and	the	processor	provides	a	fixed	processing	power	(hence	no	
cache	effects).	Even	if	oXen	the	69%	level	 is	used	as	a	maximum	load	in	any	case,	this	means	
that	to	remain	on	the	safe	side,	 it	 is	oXen	bePer	to	keep	the	overall	CPU	load	lower	than	the	
figure	obtained.	On	the	other	hand,	if	only	a	few	tasks	are	used	and	the	interac1ons	are	limited,	
oXen	the	applica1on	will	miss	no	deadline	even	if	the	processing	load	is	higher	than	69%.	The	
CPU	load	can	also	be	higher	 if	 the	periodicity	of	the	tasks	 is	harmonic.	Hence	RMA	has	to	be	
seen	as	a	guideline	that	must	be	complimented	with	a	detailed	analysis,	profiling	and	especially	
measures	 to	 give	 the	 applica1on	more	margin.	 It	 should	 also	 be	 pointed	 out	 that	 if	 a	 RMA	
schedule	misses	deadlines	 for	 the	 lower	priority	 tasks	 that	 the	higher	priority	 tasks	can	meet	
their	deadlines.	This	property	of	pre-emp1ve	priority	based	scheduling	is	e.g.	useful	for	crea1ng	
a	highest	priority	task	that	is	only	ac1vated	when	excep1ons	have	to	be	handled.	

A	 very	 detailed	 and	 comprehensive	 analysis	 of	 RMA	 is	 given	 in	 Briand	 and	 Roy	 [8].	 It	 also	
discusses	 the	 follow-up	 RMA	 algorithms	 that	 were	 developed	 later	 on	 taking	 into	 account	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	14

reali1es	 like	blocking	1mes	 (using	 shared	 resources),	 inter-task	dependencies	and	distributed	
systems.	 In	 all	 cases	 this	 results	 in	 higher	 boundaries	 	 for	 the	 CPU	 workload.	 The	 most	
important	 change	 to	 the	basic	RMA	algorithm	 is	 that	 for	determining	 the	 task	priori1es,	one	
should	not	use	the	full	period	but	the	pseudo	period	that	is	derived	by	taking	into	account	that	
the	 deadline	 of	 a	 task	 happens	 oXen	 before	 its	 period	 has	 expired.	 This	 is	 called	Deadline	
Monotonic	 Analysis	 (DMA).	 More	 extensive	 descrip1ons	 as	 well	 as	 algorithms	 for	
schedulability	analysis	for	a	wide	range	of	RMA	scheduling	policies	can	be	found	in	Ref	[9].	

It	must	be	said	however	that	 for	 distributed	 systems	no	real	RMA	algorithm	exists,	 although	
tools	 like	MAST	 [10]	 allow	 verifying	 that	a	given	 schedule	 is	 feasible.	 In	 prac1ce	a	 system	
design	with	adequate	 priori1es	will	 give	 good	assurance	that	all	 deadlines	can	 be	 met.	

An	 important	observa1on	is	also	 that	a	 rigorous	 and	 sta1c	design	 might	not	always	give	 the	
most	 safe	 system	 if	 the	first	missed	deadline	 results	 in	 catastrophic	 behaviour.	 	Many	 real-
world	 systems	 can	 tolerate	missed	deadlines	 if	 these	 misses	 have	 a	 low	 probability	 and	 if	
they	are	 spread	in	 1me	 (not	bursty).	Of	 course,	this	 means	that	 the	system	design	must	take	
this	 into	account.	A	classical	 example	is	 a	 brake-by-wire	system.	It	must	be	 designed	for	 the	
maximum	speed	of	the	car	and	hence	oXen	the	maximum	rate	will	be	used	all	the	1me.	Even	at	
this	highest	 rate,	 there	will	 be	margin	as	 the	1me	constant	of	 the	mechanical	 system	will	 be	
lower.	 If	 the	car	 then	operates	at	a	 lower	speed,	 the	control	 rate	can	be	 lowered	as	well	and	
missing	control	signals	from	1me	to	1me	(but	not	 in	con1nuous	bursts)	will	 in	the	worst	case	
only	lower	the	”quality”	of	braking,	but	this	is	oXen	not	catastrophic.	

4.5. The	 application	of	 RMA	 in	VirtuosoNext	
In	 VirtuosoNext	 it	 was	 decided	 to	 support	priority	 based	 pre-emp1ve	 scheduling	 as	 the	
standard	 scheduling	 policy.	 In	 [8]	 this	 is	 called	 Highest	 Priority	 First.	 Every	 task	 can	 be	
assigned	 its	 own	 priority	based	 on	 an	 off-line	Deadline	 Monotonic	 Analysis	 (DMA).	 It	 must	
be	 said	 however	 that	DMA	 assumes	 that	all	 tasks	 execute	 on	 a	 single	 processor,	 whereas		
VirtuosoNext	 supports	mul1-processor	 systems.	 Hence	 priori1es	 are	 considered	 a	 system-
wide	 scheduling	 parameter	and	the	 DMA	 should	 s1ll	 hold	 locally	 on	 each	 processor.	

VirtuosoNext	was	 also	designed	 to	 clearly	 separate	 Interrupt	handling	 (in	 ISRs)	 and	 interrupt	
processing	(in	a	task).	Good	design	prac1ce	dictates	that	a	minimum	1me	is	spent	in	interrupt	
handling.	This	 improves	 the	 responsiveness	of	 the	system	and	hence,	because	 interprocessor	
communica1on	oXen	requires	fast	interrupt	handling,	it	will	reduce	the	latencies.	The	laPer	is	
especially	 important	 for	 mul1processor	 systems	 as	 the	 processing	 can	 be	 distributed	 over	
several	 processors	 and	 the	 scheduling	 delay	 includes	 communica1on	 delays.	 Similarly,	 in	 the	
design	 of	 a	 network-centric	 RTOS	 it	 was	 recognised	 that	 delays	 can	 also	 be	 the	 result	 from	
implementa1on	artefacts.	Hence,	any	ac1vity	in	the	RTOS	or	its	system	level	drivers	is	done	in	
order	of	priority.	 This	minimises	 the	point-	 to-point	 latency.	 Typical	 cases	where	 this	 can	be	
important	are	wai1ng	lists	and	interprocessor	communica1on.	This	means	that	one	should	be	
able	 to	 ignore	 the	 different	 scheduling	 latencies	 as	 the	 communica1on	 delay	 can	 be	 more	
important	(especially	on	slow-speed	networks).	This	latency	is	a	combina1on	of	several	factors	
that	 are	 difficult	 to	 quan1fy.	 Factors	 are:	 communica1on	 load,	 communica1on	 set-up	 1me,	
transmission	 delay	and	receiver	latency.	Therefore,	good	profiling	 tools	 are	a	 necessity.	DMA	
then	provides	a	 good	 approxima1on	and	star1ng	 point.	For	extreme	processor	loads	 (typically	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	15

when	 the	 task’s	 individual	 processing	 1me	 is	 of	 the	 same	 order	 of	 magnitude	 as	 the	
system	latencies),	this	assump1on	 does	 not	hold	and	oXen	only	sta1c	scheduling	or	 dedica1ng	
processors	 to	 such	 loads	 is	 the	 only	 acceptable	solu1on.	

A	 small	 note	however	 on	 the	assignment	 of	 the	priori1es.	In	 our	 case,	 these	are	 assigned	
at	design	 1me	and	the	scheduler	is	 a	 straigh�orward	 Highest	Priority	First	one.	 Research	on	
dynamic	priority	assignment	 [11]	have	 shown	 that	algorithms	 that	use	Earliest	Deadline	First	
(EDF)	algorithms	(the	priority	becomes	higher	during	execu1on	for	the	tasks	whose	deadline	is	
the	nearest)	can	tolerate	a	workload	of	up	to	100%.	There	are	however	three	reasons	why	this	
op1on	was	not	further	considered.	The	first	one	is	that	the	implementa1on	of	an	EDF	scheduler	
is	not	trivial	because	measuring	how	far	a	task	is	from	its	deadline	requires	that	the	hardware	
supports	measuring	this.	As	 this	 is	oXen	not	 the	case,	one	has	to	 fall	back	on	soXware	based	
solu1ons	 that	 periodically	 record	 the	 task’s	 progress.	 For	 reasons	 of	 soXware	 overhead,	 this	
must	be	done	with	a	reasonable	frequency;	typically	about	one	millisecond	which	means	that	
fine-grain	 microsecond	 EDF	 is	 not	 feasible	 (one	 millisecond	 can	 be	 quite	 long	 for	 a	 lot	 of	
embedded	 applica1ons).	 The	 second	 reason	 is	 that	 no	 algorithms	 are	 known	 that	 allow	
calcula1ng	 the	EDF	 schedule	on	a	distributed	or	mul1core	 target.	 The	 third,	but	 fundamental	
reason	 is	 that	 an	 EDF	 schedule	 has	 no	 graceful	 degradaDon.	 If	 a	 task	 con1nues	 beyond	 its	
deadline,	 it	 can	bring	 the	whole	 system	down	by	 starva1on,	whereas	a	 sta1c	priority	 scheme	
will	s1ll	allow	higher	priority	tasks	to	run.	The	highest	priority	task	can	be	ac1vated	by	a	1me-
out	 mechanism	 so	 that	 it	 can	 terminate	 such	 a	 run-away	 task	 before	 the	 other,	 s1ll	 well	
behaving	 tasks	 are	 starved.	 Hence,	 if	 EDF	 scheduling	 is	 used,	 it	 is	 bePer	 to	 restrict	 this	 to	 a	
maximum	 priority	 level	 within	 a	 standard	 priority	 based	 scheduling	 scheme.	 A	 similar	
observa1on	will	be	made	in	the	next	sec1on	when	discussing	priority	inheritance	schemes.	

A	 general	 remark	must	be	 made	 here.	 An	 RTOS	in	 itself	 does	 not	 guarantee	that	all	 real-
1me	 requirements	 will	 be	 met.	 Designers	 must	 use	 schedulability	 analysis	 and	 other	
analyses	 like	simula1on	and	 profiling	 to	 verify	 this	 before	the	applica1on	 tasks	are	 executed.	
However,	 an	 RTOS	must	 provide	 the	 right	 support	 for	 execu1ng	 the	 selected	 schedule.	 In	
general,	 this	 means	 a	 consequent	 scheduling	policy	 based	 on	 priori1es	with	 pre-emp1on	
capability	 and	 with	 support	 for	 priority	 inheritance.	 VirtuosoNext	 provides	 this	
complemented	 with	 a	 run1me	 tracing	 func1on	 allowing	 profiling	 the	 temporal	 behaviour	 at	
run1me.	

4.6. The	 issue	of	 priority	inversion	 and	 its	 inadequate	solution	
A	major	issue	that	has	a	serious	impact	on	predictability	is	the	presence	of	shared	resources	in	
an	 embedded	 system.	A	 shared	 resource	 is	 oXen	 associated	with	 a	 cri1cal	 sec1on	 or	 an	
access	protocol.	 The	 laPer	are	needed	 to	assure	 that	only	one	 task	at	 a	1me	can	modify	 the	
status	of	the	shared	resource.	Examples	are:	

• A	 shared	buffer	 that	must	be	 read	 out	 before	 new	 data	is	wriPen	into	 it,	
• hardware	status	registers	that	set	 a	 peripheral	in	 a	 specific	state,	
• a	 peripheral	that	can	 handle	only	 one	 request	at	 a	 1me.	

Note	that	a	shared	resource	is	a	concept	at	a	higher	level	of	abstrac1on	than	the	physical	level	
but	 it	 will	 oXen	 be	 associated	 with	 it.	 It	 can	 be	 used	 to	 protect	 a	 cri1cal	 sec1on	 (e.g.	 the	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	16

update	of	pointers	in	a	datastructure)	but	it	is	not	a	cri1cal	sec1on	in	itself.	The	cri1cal	sec1on	
is	 a	 sequence	 of	 steps	 of	 the	 upda1ng	 algorithm	 that	 must	 be	 done	 in	 an	 atomic	 way	 to	
guarantee	 that	 the	 datastructures	 remain	 coherent.	 It	 should	 also	 not	 be	 confused	 with	
disabling	 interrupts	 on	 a	 processor.	 The	 laPer	 is	 a	 hardware	 mechanism	 that	 is	 processor	
specific	and	is	designed	to	prevent	other	external	interrupts	from	interfering	with	the	intended	
program	sequence.	

In	 the	 context	 of	 a	 concurrent	 program,	 resource	 locking	 means	 that	 the	 system	 assigns	
temporarily	ownership	of	the	resource	to	a	specific	task	un1l	this	task	releases	the	resource.	If	
more	than	one	task	requests	to	use	the	same	resource,	the	second	and	subsequent	reques1ng	
tasks	cannot	con1nue	and	will	be	blocked	un1l	 the	resource	 is	 released	by	 its	current	owner.	
During	 the	 1me	 a	 task	 owns	 a	 resource,	 it	 can	 become	 descheduled,	 e.g.	 because	 another	
higher	 priority	 task	 becomes	 ac1ve,	 the	 task	 requests	 a	 second	 resource,	 the	 peripheral	
associated	with	the	resource	is	delayed	itself	or	the	task	needs	to	synchronise	with	another	task	
that	has	 lower	priority.	 In	all	cases,	the	resource	owning	tasks	and	other	wai1ng	tasks	can	be	
blocked	 from	progressing	which	means	 that	 deadline	 viola1ons	 become	 possible	 even	 if	 the	
priori1es	were	correctly	assigned	and	the	applica1on	is	schedulable	with	known	blocking	1mes.	
A	 very	 important	 conclusion	 to	 draw	 at	 this	 point	 is	 that	 a	 good	 design	will	 try	 to	 limit	 the	
blocking	 1mes	 as	 much	 as	 possible	 and	 should	 avoid	 the	 need	 to	 protect	 the	 access	 to	
resources	 at	 all.	 This	might	 require	 a	 change	 in	 the	 architecture	 of	 the	 system	but	 from	 the	
reliability	and	safety	point	of	view	this	is	a	cheap	preven1ve	measure.	

The	 real	 issue	 comes	 in	when	we	 also	 analyse	what	
can	 happen	 as	 a	 func1on	 of	 the	 assigned	 priori1es.	
Assume	a	high	priority	task	requests	a	resource	that	is	
owned	 by	 a	 low	 priority	 task.	 As	 it	 is	 a	 low	 priority	
task,	middle	 priority	 tasks	 that	 are	 ready	 to	 run	will	
pre-empt	 the	 lower	 priority	 task	 and	 if	 they	 have	
lengthy	 processing	 1mes,	 they	 will	 block	 the	 high	
priority	 task	 even	 if	 they	 don’t	 need	 the	 resource	 at	
all.	 This	 problem	 is	 called	 the	 priority	 inversion	
problem	 and	 was	 made	 famous	 in	 1977	 when	 the	

Mars	Pathfinder	[12]	kept	rese�ng	itself	as	a	result	of	a	con1nuously	missed	deadline,	which	
was	 caused	 by	 a	 classical	 case	 of	 priority	 inversion	 as	 described	 above	 whereby	 priority	
inheritance	was	disabled	by	default	in	the	RTOS.	

Is	there	a	cure	for	this	problem	(assuming	that	the	system	architect	did	his	best	in	minimising	
the	 need	 for	 resource	 locking)?	 The	 answer	 is	 unfortunately	 no,	 but	 the	 symptoms	 can	 be	
relieved.	The	solu1on	is	actually	very	simple.	When	the	system	detects	that	a	task	with	a	higher	
priority	than	the	one	currently	owning	the	resource	 is	reques1ng	 it,	 it	 temporarily	boosts	the	
priority	 of	 the	 current	 owner	 task,	 so	 that	 it	 can	 proceed	 further.	 	 Priority	 inversion	will	 be	
avoided.	In	prac1ce	different	algorithms	were	tried	out,	but	in	general	the	only	change	made	is	
that	the	boos1ng	of	the	priority	is	limited	to	a	certain	applica1on	specific	ceiling	priority.	 	Else,	
the	scheduling	order	of	other	tasks	requiring	a	different	set	of	resources	can	be	affected	as	well.	
Using	the	ceiling	level,	we	can	also	guarantee	that	higher	priority	tasks	(like	monitor	tasks)	will	
run	when	ac1vated	and	not	being	blocked	by	a	lower	priority	task	that	was	boosted.	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	17

If	we	analyse	the	issue	of	blocking	in	the	context	of	a	real	system,	we	can	see	however	that	the	
priority	inheritance	algorithm	does	not	fully	solve	the	blocking	issue.	It	relieves	the	symptoms	
by	reducing	the	blocking	1mes	but	a	good	design	can	maybe	avoid	them	in	the	first	place.	The	
resource	 blocking	 issue	 is	 part	 of	 a	 more	 general	 issue.	 In	 essence,	 a	 concurrent	 real-1me	
system	 is	 full	 of	 implicit	 resource	 requests.	 For	 example,	 if	 a	 high	 priority	 task	 is	 wai1ng	 to	
synchronise	with	a	lower	priority	task,	should	the	kernel	also	not	boost	its	priority?	To	make	it	
worse,	if	such	a	task	is	further	dependent	on	other	tasks	and	we	would	boost	the	priority	can	
this	 not	 result	 in	 a	 snowball	 effect	 whereby	 task	 priori1es	 are	 boosted	 for	 all	 tasks	 and	 of	
course,	we	would	have	no	gain.	Or	assume	that	the	task	is	wai1ng	for	a	memory	block	while	a	
lower	 priority	 task	 owns	 such	 a	 memory	 block.	 Or	 assume	 that	 a	 task	 acquires	 a	 resource,	
which	makes	it	ready	and	is	put	on	the	ready	list.	But	while	 it	waits	to	be	scheduled	a	higher	
priority	 task	becomes	ready	first	and	requests	 the	same	resource,	which	means	 that	 the	first	
task	that	was	ready	should	be	descheduled	again	and	the	resource	given	to	the	higher	priority	
one.	

While	 all	 these	 observa1ons	 are	 correct,	 oXen	 such	 situa1ons	 can	 be	 contained	 by	 a	 good	
architectural	 design.	 The	 major	 issue	 is	 that	 implemen1ng	 this	 extra	 resource	 management	
func1onality	 is	not	 for	 free	and	the	tests	 they	require	are	executed	every	1me,	 resul1ng	 in	a	
non-negligible	overhead.	The	conclusion	is	that	in	prac1ce	resource	based	protec1on	must	be	
avoided	 by	 design	 and	 that	 priority	 inheritance	 support	 is	 best	 limited	 to	 the	 tradi1onal	
blocking	 situa1ons.	 In	 the	 case	 of	 the	 implicit	 resource	 blocks,	 if	 they	 pose	 an	 issue	 to	 the	
applica1on,	 they	 can	 be	 reduced	 to	 a	 classical	 priority	 inversion	 problem	 by	 associa1ng	 a	
resource	with	the	implicit	resource.	E.g.	if	a	memory	block	is	cri1cal,	associate	a	resource	at	the	
applica1on	 level	and	normal	 support	 for	priority	 inheritance	will	 limit	 the	blocking	1me.	Else	
make	sure	that	the	system	has	addi1onal	memory	blocks	available	from	the	beginning.	

4.7. Distributed	priority	inheritance	 in	VirtuosoNext	
While	 implemen1ng	 support	 for	 priority	 inheritance	 for	 a	 single	 processor	 RTOS	 is	
straigh�orward,	implemen1ng	it	in	a	distributed	RTOS	is	more	complicated	because	task	states	
are	distributed	and	change	over	1me.	On	a	single	processor,	the	RTOS	scheduler	will	examine	
the	 resource	 current	 owner	 when	 a	 task	 is	 reques1ng	 a	 resource.	 If	 the	 owner’s	 priority	 is	
lower,	then	it	will	put	the	reques1ng	task	in	the	resource	wai1ng	list	and	boost	the	priority	of	
the	current	owner.	When	the	owner	releases	the	resource,	the	RTOS	scheduler	will	assign	it	to	
the	highest	priority	task	in	the	wai1ng	list.	

On	a	mul1-processor	system	(single	chip	many/mul1core,	networked),	on	each	node	the	kernel	
scheduler	is	managing	the	resources	residing	on	 its	 node.	Requests	for	 the	resource	can	come	
from	 local	 tasks,	 remote	 tasks,	 the	owner	 task	 can	 be	 residing	on	 the	 same	 node	 or	 on	
another	node,	 can	 be	 wai1ng	on	s1ll	 another	node	 or	 it	 can	 be	 in	 transit	 from	 one	 node	
to	 another.	 Hence,	 the	local	 kernel	 scheduler	must	determine	where	 the	task	resides	 at	the	
moment	 of	the	 resource	 request,	send	 a	priority	boost	 request	to	 the	 node	where	 the	 task	
is	residing	 and	 when	 the	 resource	 is	released,	 lower	 the	 owner	 task’s	 priority	to	 its	original	
priority.	

While	 this	 approach	 works	 well,	 the	 inherent	 communica1on	 delay	 of	 the	 inter-node	
communica1on	 can	 result	 in	 side-effects.	 For	 example	 the	 owner	 task	 might	 have	 issued	 a	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	18

request	that	is	forwarded	to	another	node	just	before	the	boost	request	arrives.	In	prac1ce	this	
means	that	 the	distributed	 priority	inheritance	implementa1on	 is	a	best	effort	approach.	The	
effects	are	mi1gated	 if	all	 tasks	 involved	have	a	rela1ve	high	priority,	whereby	the	blocking	 is	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	19

Figure	5	Three	tasks	sharing	a	resource	first	withput	and	then	with	priority	inheritance	support

less	problema1c	and	if	the	network	has	rela1vely	low	communica1on	delays.	The	boos1ng	and	
reduc1on	of	the	blocking	1me	is	the	greatest	when	the	owner	task	has	a	rela1vely	low	priority	
versus	the	reques1ng	task.	In	that	case,	the	priori1sed	communica1on	layer	will	automa1cally	
assure	that	the	priority	boost	request	arrives	first.	This	also	means	that	such	a	priority	boos1ng	
mechanism	 is	 most	 useful	 if	 the	 use	 of	 the	 resource	 is	 rela1vely	 long,	 i.e.	 longer	 than	 the	
transmission	latency	in	the	network.	

Figure	6	Event	trace	of	distributed	priority	inheritance	in	VirtuosoNext	

4.8. Next	generation	requirements	
In	 the	 first	 part	 of	 this	 paper,	 we	 have	 limited	 ourselves	 to	 the	 handling	 of	 real-1me	
requirements.	An	unspoken	assump1on	was	 that	 the	system	 is	 fully	defined	at	compile	1me.	
For	most	embedded	applica1ons	this	is	the	case.	However,	 as	applica1ons	are	 becoming	 more	
dynamic	 and	 adapDve,	 the	 complexity	 increases	 as	 well.	 In	 such	 applica1ons,	 mee1ng	
stringent	 real-1me	requirements	 is	 s1ll	oXen	a	prime	requirement	but	 it	 is	not	sufficient.	The	
real-1me	requirements	will	have	to	be	met	when	mul1ple	applica1ons	execute	simultaneously	
with	a	variable	amount	of	available	resources.	In	the	extreme,	this	also	means	in	the	presence	
of	 faults	 resul1ng	 in	 a	 number	 of	 resources	 no	 longer	 being	 available	 on	 a	 permanent	 or	
temporary	basis.	

We	 will	 illustrate	 this	 with	 two	use	 cases	 for	 which	 the	 network-centric	 VirtuosoNext	 could	
provide	 the	 system	level	 software.	

The	 first	 use	 case	 is	 a	 next	 generaDon	 electric	 vehicle.	 Such	 a	 vehicle	 will	 be	 fully	
controlled	 by	 software	 and	 electronic	 components	 (“drive-by-wire”)	 and	 likely	 have	 a	
distributed	power	 and	 wheel	 control	 architecture	whereby	 for	each	 wheel	trac1on	 control	is	
combined	 with	 ac1ve	 suspension	 control,	 stability,	 an1-slip	 control	 and	 even	 braking.	 Many	
components	 can	 fail	 or	 show	 intermiPent	 failures,	 e.g.	 sensors	 can	 fail,	 wires	 can	 break,	
connectors	 can	 give	 micro-cuts	 (very	 short	 absence	 of	 electrical	 contact	 due	 to	 vibrations),	
memory	can	 become	 corrupted,	 processors	can	fail,	 etc.	While	the	design	should	be	 robust	
enough	to	make	 such	 failures	 very	 low	probability	events,	over	 the	 life1me	 of	the	 car	 such	
occurrences	 are	 certain.	 Prac1cally	 speaking	 this	 means	 that	 while	 the	 system	 can	 be	
designed	assuming	that	 all	 resources	are	always	available;	the	designer	must	provide	additional	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	20

opera1ng	modes	 that	 take	 into	 account	 that	some	 resources	 are	 not	 available	for	 mee1ng	
all	 requirements.	 In	 the	 simplest	 case	 this	 can	mean	 that	 when	one	 wheel	 controller	 fails,	
the	processing	 is	 immediately	redistributed	 over	 the	three	s1ll	 fully	 func1onal	units.	Or	this	
can	 mean	that	the	 system	 switches	 to	 a	degraded	mode	 of	opera1on	with	 a	different	set	 of	
tasks	using	 less	compute	intensive	 algorithms.	

The	 second	 use	 case	 is	 a	 next	 generaDon	mobile	 plamorm.	 It	 is	 envisioned	 that	 such	 a	
pla�orm	will	have	tens	of	processing	nodes,	execute	mul1ple	applica1on	func1ons	with	some	
func1ons	showing	a	variable	processing	 load	depending	on	 the	data	being	processed	 (typical	
for	mul1media	and	image	processing).	In	the	worst	case,	the	processing	load	can	even	surpass	
temporarily	 the	 available	 processing	 power.	 On	 the	 other	 hand	 such	 applica1ons	 can	 oXen	
tolerate	a	few	missed	deadlines.	However,	such	a	mobile	pla�orm	loaded	with	a	dynamic	set	of	
tasks,	poses	addi1onal	constraints.	E.g.	when	using	wireless	connec1ons,	bandwidth	will	vary	
over	 1me,	 processing	 power	 might	 be	 variable	 because	 of	 voltage	 and	 frequency	 scaling	
techniques	to	minimise	power	consump1on	and	available	memory	will	vary	depending	on	the	
use	by	other	applica1ons.	Many	of	the	processors	used	for	such	applica1ons	are	so-called	many	
or	mul1core	chips	are	essen1ally	chips	with	in	silicon	networks	(NoCs)	over	which	CPUs	as	well	
as	high	performance	peripherals	are	connected.	The	NoC	as	well	as	the	peripherals,	the	on-chip	
as	 well	 as	 off-chip	 memory	 are	 all	 resources	 that	 can	 be	 shared.	 In	 the	 Figure	 6	 such	 an	
advanced	mul1core	 chip	 supported	by	VirtuosoNext	 is	 shown.	Newer	 versions	 also	 include	a	
quad-core	ARM	processor.	

What	 these	 two	 use	 cases	 illustrate	 is	 that	an	 embedded	 real-1me	 applica1on	 is	 becoming	
more	 challenging	 for	 following	 reasons:	

• Applica1ons	can	 no	 longer	 be	 fully	 staDcally	 defined.	

• Some	 applica1ons	have	 a	 variable	processing	 load.	

• The	system	software	must	 not	only	 schedule	 processing	 1me	 as	 a	 resource,	but	also	
other	system	resources	like	 bandwidth,	 processing	 power,	 memory	and	 even	 power	
usage.	

• The	system	will	 have	hard	real-Dme	constraints	 as	well	 as	so6	real-Dme	constraints.	

• The	 system	 will	 have	 different	 “modes”	 (each	 consis1ng	 of	 a	 coherent	 set	 of	
states).	

• Fault	 tolerance	 is	 not	 to	 be	 considered	 as	 an	 excep1on	but	 as	 a	 case	 where	 the	
system	has	 less	 resources	 available.	

The	 result	is	 that	such	 an	 embedded	system	becomes	 “layered”	and	 1me	 as	a	 resource	 is	
not	 the	only	 one	 that	must	be	 scheduled.	Such	 a	 system	will	 need	to	schedule	the	use	 of	
several	types	 of	 resources,	although	 the	final	 criterion	remains	meeDng	the	various	real-Dme	
requirements.	 In	 the	 guaranteed	 mode	 of	 opera1on	 we	 find	 back	 the	 tradi1onal	 real-1me	
scheduling.	 Rate	 Monotonic	 Scheduling	 provides	 for	 mee1ng	 the	 1me	 proper1es	 whereas	
compile-1me	 analysis	 assures	 that	 all	 other	 resources	 are	 available.	 In	 the	 extreme	 case	 this	
includes	 providing	 for	 fault	 tolerance	 because	 the	 system	 has	 to	 be	 designed	 with	 enough	
redundant	resources	to	cope	with	major	failures.	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	21

The	next	layer	 is	 then	a	 best-effort	mode	 in	 which	the	proper1es	are	guaranteed	most	of	the	
1me,	eventually	with	degraded	service	levels.	For	the	1me	proper1es	this	means	we	enter	the	
domain	of	soX	real-1me,	but	oXen	at	the	applica1on	level	this	means	that	the	system	offers	a	
sta1s1cally	defined	 level	of	quality	of	 service	 level.	A	 typical	 example	 is	 genera1ng	an	 image	
with	less	resolu1on	because	not	enough	processing	power	was	available	during	the	frame	1me.	
In	the	extreme	case	this	corresponds	with	a	fail-safe	mode	of	opera1on	whereby	the	quality	of	
services	is	reduced	to	a	minimum	level	that	is	s1ll	sufficient	to	stop	the	system	in	a	safe	way.	

Finally,	 the	 last	 layer	 is	 one	 where	 essen1ally	nothing	 is	 guaranteed.	 The	 system	 will	 only	
make	 resources	 available	 if	 there	 are	 any	 leX.	 Sta1s1cally,	 this	 can	 s1ll	 be	most	 of	 the	1me	
unless	a	cri1cal	resource	like	power	is	star1ng	to	fail,	and	the	system	then	was	designed	to	put	
the	processor	in	a	“sleep”	mode	to	e.g.	stretch	baPery	1me.	

What	we	witness	here	is	a	transi1on	from	a	sta1cally	defined	hard	real-1me	system	with	fully	
predictable	1me	behaviour,	 but	 possibly	 catastrophically	 failing,	 towards	 a	 system	where	 the	
design	goal	is	defined	as	 a	 staDsDcal	quality	of	service	 (QoS)	 at	 the	 applica1on	 level.	 Such	 a	
system	 must	s1ll	 be	able	to	meet	hard	real-1me	constraints	in	a	predictable	way	but	must	also	
offer	 different	 opera1ng	 modes	 corresponding	 with	 a	 graceful	 degrada1on	 of	 the	 services	
offered	by	the	system	as	a	whole.	Prac1cally	speaking,	when	a	processor	 fails,	 it	will	oXen	be	
catastrophically	although	processors	with	a	MMU	(Memory	Management	Unit)	and	appropriate	
system	soXware	can	contain	the	failure	to	the	erroneous	task	or	process	without	affec1ng	the	
rest	 of	 the	 applica1on,	 unless	 there	 are	 dependencies.	Most	 embedded	 processors	 however	
will	need	a	hard	reset	to	recover	from	such	a	fault.	Hence,	such	a	system	will	need	redundancy	
of	hardware	resources,	be	it	as	part	of	a	distributed	system,	be	it	as	part	of	a	mul1core	chip.	

These	 next	 genera1on	requirements	were	not	 addressed	in	the	 original	 VirtuosoNext	project,	
but	the	fact	that	VirtuosoNext	supports	programming	a	mul1core	and	distributed	 system	in	 a	
transparent	way	 facilitates	addressing	such	 requirements.	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	22

5. An	approach	 for	QoS	resource	scheduling	

In	 this	sec1on	 we	make	an	aPempt	at	developing	the	QoS	domains	as	requirements	resul1ng	
in	 concrete	 func1onal	 and	 architectural	 support	 to	 enable	 managing	 the	 diversity	 of	 mul1/
many-core	on-chip	resources.	

5.1. Fo rma l i s i n g 	 Quality	of	 Service	(QoS)	domains	
If	 a	 system	needs	more	 resources	 in	a	worst	 case	applica1on	scenario	 than	available,	does	 it	
mean	that	it	is	not	a	feasible	system?	As	we	have	seen	above,	this	needs	not	to	be	the	case.	The	
step	 to	make	 is	 to	assign	 the	priori1es	not	only	 in	 terms	of	mee1ng	real-1me	constraints	 (as	
dictated	by	RMS)	but	also	as	a	 func1on	of	 the	cri1cality	 level	of	 the	task.	 In	essence,	we	can	
dis1nguish	three	levels	whereby	we	map	the	cri1cality	level	to	a	QoS	level:	

• QoS-3:	 Tasks	that	must	run	and	never	 miss	 any	 deadline:	this	is	 the	hard	real-Dme	
domain.	

• QoS-2:	 Tasks	that	must	run	 but	can	 miss	 a	 deadline	if	not	 too	 oXen:	 this	 is	the	 so6	
real-Dme	domain	of	best	 effort.	

• QoS-1:	Tasks	 that	must	 run	 but	 only	when	 resources	 are	 leX	 over:	this	 is	the	
domain	of	no	 guarantees.	

We	 can	 formalise	 this	 further:	

QoS-1	 is	 the	 level	 where	 is	 no	 guarantee	 that	 there	 will	 be	 resources	 to	 provide	 the	
service.	 	

This	implies	tasks	with	no	strict	real-1me	constraints	and	oXen	convenience	func1ons.	
It	also	applies	to	tasks	where	the	output	is	more	or	less	1me-independent.	If	no	update	
can	be	calculated,	the	previous	output	will	be	sufficient.	This	does	not	mean	that	for	a	
service	 to	 remain	usable,	 that	a	certain	 level	of	upda1ng	must	be	possible.	 A	 typical	
example	applica1on	is	a	video	phone	with	a	bad	connec1on.	In	the	worst	case,	the	user	
can	switch	off	the	video	transmission	to	 improve	the	audio	quality.	Hence	a	 fault	 like	
resource	exhaus1on	does	not	result	 in	a	fatal	condi1on	but	mostly	 in	a	 lower	 level	of	
service	 provided.	 The	 limit	 case	 is	 the	 one	 whereby	 the	 quality	 has	 so	 much	
deteriorated	 that	 it	 becomes	 fully	unusable.	Of	 course,	 this	 should	not	happen	more	
oXen	than	specified.	This	might	be	the	case	when	the	system	has	been	underspecified	
from	the	very	beginning.	

QoS-2	 is	 the	level	 where	 the	tasks	must	produce	a	 result	within	a	 staDsDcally	 acceptable	
interval.		

This	means	that	the	tasks	have	no	hard	real-1me	constraints	but	should	s1ll	meet	them	
most	of	the	1me,	hence	we	can	define	quality	aPributes	like	probability	of	reaching	the	
deadline	within	a	1me	interval,	probability	of	successive	misses,	etc.	Hence	a	fault	like	
resource	exhaus1on	results	 in	a	sta1s1cally	predictable	 failure	 rate.	Upon	a	 fault,	 the	
applica1on	must	 define	what	 an	 acceptable	 behaviour	 is.	 Typical	 behaviour	 is:	 abort	
and	 drop	 the	 result,	 extrapolate	 from	 a	 previous	 result,	 etc.	 Hence	 the	 service	
degrada1on	has	been	specified	and	must	be	met.	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	23

QoS-3	 is	 the	 level	whereby	 the	 system	does	 not	 tolerate	missing	 a	 deadline.	

If	 such	a	 fault	occurs,	all	 service	can	be	 lost.	While	 the	consequences	are	applica1on	
specific,	 the	 applica1on	 must	 be	 capable	 to	 capture	 the	 fault	 and	 prevent	 it	 from	
genera1ng	system	errors,	switch	the	system	to	a	safe	state	or	ini1ate	ac1ons	to	restart	
the	system.	This	is	typically	the	domain	of	safety,	oXen	requiring	hardware	support.	We	
can	 dis1nguish	 two	 subdomains	 depending	 on	 the	 hardware	 architecture.	 If	 no	
redundancy	 is	 available,	 the	 system	must	be	brought	 into	a	 safe	 state	aXer	 the	 fault	
happened.	 Hence,	 it	 is	 part	 of	 the	 system	 specifica1on.	 If	 hardware	 redundancy	 is	
available,	then	the	redundancy	can	be	used	to	s1ll	provide	a	valid	output.	Hence,	the	
system	will	have	degraded	but	the	service	level	will	have	been	maintained.	Of	course,	a	
subsequent	fault	can	now	be	fatal;	hence	the	safety	assurance	will	now	be	lower.	

Note	that	above	classifica1on	is	very	generic	and	does	not	prescribe	in	detail	how	the	system	
should	handle	the	faults.	This	 is	oXen	applica1on	specific.	However	 it	shows	that	 in	general	a	
system	can	host	several	applica1ons	or	func1ons	with	a	different	level	of	QoS.	It	also	points	to	a	
different	approach	in	safety	design.	Rather	than	making	sure	in	a	sta1c	way	that	an	applica1on	
has	 all	 the	 resources	 defined	 at	 build	 1me,	 we	 only	 need	 to	 guarantee	 this	 for	 QoS3	 level	
applica1ons.	Fault	tolerance	can	be	considered	as	its	limit	case.	If	the	system	has	serious	issues	
with	resource	exhaus1on,	then	all	resources	should	be	assigned	to	meet	QoS3	specifica1ons.	In	
the	 worst	 case,	 this	 means	 keeping	 the	 system	 alive	 as	 long	 as	 possible	 with	 minimal	
resources	 to	 prevent	greater	catastrophic	failures.	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	24

Figure	7	Advanced	mulDcore	chip:	Texas	Instruments	C6678	DSP

This	is	in	line	with	the	concept	of	Rate	Monotonic	Scheduling	whereby	priority	is	used	to	assign	
automa1cally	 the	 CPU	 1me	 to	 the	 highest	 priority	 tasks	 and	whereby	 priority	 inheritance	 is	
used	to	unblock	the	resources	as	fast	as	possible	so	that	higher	priority	task	can	 use	 them.	

5.2. Isolation	 for	error	 propagation	prevention	
Given	that	we	have	different	QoS	levels,	a	clear	requirement	is	that	errors	in	one	level	must	not	
result	in	errors	in	another,	in	par1cularly	higher	QoS	level.	But	also	inside	each	level,	measures	
must	 be	 taken	 to	 prevent	 error	 propaga1on	 from	 one	 func1on	 to	 another.	 This	 should	 be	
pursued	in	a	systema1c	way	and	requires	several	layers	of	defense.	

At	 the	programming	 level:	 Error-free	code.	The	first	objec1ve	to	achieve	 is	avoiding	that	 the	
soXware	itself	generates	errors	that	were	introduced	during	its	development.	While	extensive	
tes1ng	can	uncover	many	of	these,	to	increase	the	assurance	formal	modelling	 and	verifica1on	
is	 a	must	for	safety	 cri1cal	applica1ons.	

Defensive	 programming:	 The	 second	 objec1ve	 is	 to	 protect	 the	 soXware	 from	 run1me	
generated	errors.	This	is	mostly	related	to	the	numerical	domains.	Data	values	must	remain	in	a	
valid	range	at	the	input,	processing	and	output	stage.	While	this	is	also	a	concern	of	developing	
error-free	code,	data	can	also	receive	wrong	values	due	to	hardware	faults	(e.g.	corrupted	bits	
due	to	external	radia1on	of	a	power	supply	glitch).	Several	techniques	can	be	used	to	mi1gate	
the	 effects,	 ranging	 from	 plausibility	 checks,	 clamping	 the	 data	 to	 limit	 values,	 using	
redundancy	or	using	coded	programming.	In	general,	this	also	means	adop1ng	a	programming	
style	 that	 avoids	 dynamically	 changing	 code	 and	data	 at	 run1me.	 Sta1c	 code	 that	 verifies	 at	
compile	1me	that	all	 resources	needed	are	available	before	 the	code	 is	started,	 is	certainly	a	
good	strategy	for	many	safety	cri1cal	embedded	systems.	

At	the	processor	 level:	Current	processor	designs	are	s1ll	 largely	based	on	the	von	Neumann	
architecture	 whereby	 the	 ALU	 sequen1ally	 executes	 code	 thereby	 reading	 and	 wri1ng	 data	
residing	in	a	global	address	space.	This	in	conflict	in	terms	of	error	propaga1on	with	the	RTOS	
programming	model	 that	 can	 be	 seen	 as	 set	 of	 interac1ng	 func1ons,	 each	 having	 their	 own	
workspace	 (and	 hence	 called	 tasks	 in	 a	 RTOS).	When	 a	 task	 is	 execu1ng,	 it	 is	wriPen	 in	 the	
assump1on	that	it	has	access	to	all	on-chip	resources	and	executes	independently	whereby	the	
RTOS	kernel	 isolates	 it	 from	the	 lower	 level	hardware	details.	We	see	here	 the	emergence	of	
virtualisa1on.	To	make	 this	 safe	and	 secure,	no	 task	 shall	be	allowed	 to	modify	 code	or	data	
belonging	to	other	tasks,	except	under	protec1on	of	the	kernel	task	using	its	services.	On	many	
micro-controllers	there	is	no	hardware	support	available,	so	only	verified	soXware	can	reduce	
the	 probability	 of	 this	 happening	 to	 a	minimum.	More	 advanced	micro-controllers	 will	 have	
some	 form	 of	 memory	 protec1on	 (MPU)	 that	 allows	 restrict	 memory	 access	 to	 specified	
regions	 (oXen	with	 a	 granularity	 of	 a	 few	Kbytes)	 and	will	 have	 a	 user	 as	well	 as	 supervisor	
mode,	whereby	in	user	mode	certain	opera1ons	are	prohibited.	High-end	processors	will	have	
Memory	Management	support	(MMU)	whereby	the	MMU	helps	in	execu1ng	code	in	a	virtual	
linear	address	space	and	helps	to	isolate	user	applica1ons	from	each	other.	MMUs	are	however	
complex	and	resource	 intensive,	whereby	the	granularity	 is	 fairly	 large	tens	of	Kbytes).	Latest	
developments	 have	 added	 so-called	 hypervisor	 support.	 Hereby	 the	 processor	 I/O	 space	 is	
virtualised,	reducing	the	probability	of	corrup1on	by	compe1ng	processes.	All	these	hardware	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	25

techniques	 assist	 the	 soXware	 layer,	 but	 increase	 the	 complexity	 and	decrease	 the	 hard-real	
1me	capability,	as	e.g.	extra	latencies	are	introduced.	

At	the	 processor’s	 architectural	 level:	A	simple	and	straigh�orward	strategy	is	to	develop	the	
processing	hardware	in	such	a	way	that	each	applica1on	has	its	own	dedicated	CPU	core.	This	
technique	is	not	new	as	it	allows	using	dedicated	and	op1mised	CPU	cores	for	the	applica1on	at	
hand.	 In	 addi1on,	 if	 each	 core	 has	 its	 own	 local	memory,	 oXen	 the	 clock	 frequency	 can	 be	
reduced,	 which	 is	 beneficial	 in	 terms	 of	 energy	 consump1on.	 However	 the	 designer	 is	 here	
confronted	with	physical	constraints.	First	of	all,	memory	now	becomes	the	cri1cal	resource.	In	
addi1onal	memory	 technology	has	 followed	CPU	clocks	 in	 size	but	not	 in	 speed.	Secondly,	 in	
the	end	processors	are	 I/O	bound	and	there	 is	only	a	maximum	of	pins	 that	can	be	put	on	a	
chip	package.	Hence,	memory	as	well	as	I/O	devices	have	become	shared	resources,	even	in	the	
case	of	redundancy.	

At	the	 system’s	 architectural	level:	From	above,	one	can	see	that	to	reach	the	highest	level	of	
QoS,	dedicated	hardware	is	the	most	trustworthy	solu1on.	In	the	ideal	case,	we	have	different	
chips	for	each	applica1on.	While	this	is	no	longer	very	costly,	it	moves	partly	the	problem	to	the	
PCB	domain	where	the	probability	of	failures	 due	to	mechanical	and	chemical	stress	is	higher	
than	in	the	chip	package.	However,	it	is	oXen	the	only	way	to	mi1gate	common	mode	failures	
(example:	 power	 supply	 issues)	 and	 with	 an	 adequate	 programming	 model,	 it	 allows	
heterogeneous	redundancy.	

To	conclude	we	can	see	that	the	various	defense	mechanisms	are	intertwined	and	a	good	trade-
off	decision	will	depend	as	well	on	the	applica1on	as	on	the	available	hardware.		However,	two	
factors	dominate.	The	first	one	is	that	an	adequate	programming	model	is	a	precondi1on.	The	
second	one	 is	 that	 simple	hardware	 error	 detec1on	 and	protec1on	mechanisms	 can	be	 very	
beneficial.	In	all	cases	is	the	key	challenge	to	share	the	available	resources	in	the	best	possible	
way	

5.3. The	 trade-offs	 involved	when	 selecting	 the	 resource	 quantum	
When	 resources	 are	 available,	 a	 mechanism	 must	 be	 provided	 to	 share	 them	 amongst	 the	
compe1ng	 applica1on	 func1ons.	 The	 simplest	 way	 is	 to	 associate	 a	 logical	 resource	 lock	
(managed	by	the	RTOS	kernel)	with	each	physical	resource.	The	ques1on	is	to	know	how	much	
of	the	global	resources	like	bandwidth,	memory	or	energy	should	be	allocated.	We	call	such	a	
resource	part	a	 resource	quantum.	 The	trade-offs	to	be	made	are	mul1ple:	

• The	quantum	must	be	 large	 enough	to	 offset	 the	overhead	associated	with	alloca1ng	
a	 quantum.	

• The	 quantum	 should	 be	 small	 enough	 to	 avoid	 starva1on	 for	 other	 applica1on	
func1ons.	

We	 can	 illustrate	 this	 with	 the	 case	 of	 a	 shared	 communica1on	 link	 between	 two	 or	 more	
nodes.	Assuming	we	transmit	and	receive	a	communica1on	unit	of	N	bytes	at	a	1me,	following	
parameters	are	of	importance:	

• The	 set-up	Dme	 of	a	 communica1on.	
• The	 transmit	Dme	 of	a	 communica1on.	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	26

• The	 maximum	bandwidth	of	the	 communica1on	medium.	

• The	 communicaDon	 overhead	per	 transmiPed	byte	 (e.g.	 due	 to	 headers	and	extra	
control	bytes).	

• The	arbitra1on	overhead	and	communica1on	scheduling	delay.	

• The	 recepDon	Dme	 of	a	 communica1on.	

If	we	assume	that	such	a	communica1on	unit	consists	of	a	packet,	itself	composed	of	a	header	
and	 payload,	 then	 the	 set-up	 1mes	 will	 be	 equal	 for	 all	 packets	 but	 the	 transmission	 1me	
depends	on	 the	payload.	The	smaller	 the	packets,	 the	more	packets	we	can	send	per	unit	of	
1me,	but	the	lower	the	bandwidth	at	the	applica1on	level.	Moreover	the	larger	the	packet,	the	
longer	 the	blocking	1me.	A	 similar	 situa1on	can	be	 found	when	using	1me-slicing.	Minimum	
1me-slices	are	needed	to	keep	the	overhead	acceptable,	but	longer	1me	slices	will	reduce	the	
responsiveness	of	the	system.	The	issue	is	that	the	quantum	size	will	be	applica1on	and	system	
specific,	hence	no	op1mum	solu1on	can	be	found	beforehand.	The	solu1on	is	to	be	found	in	an	
itera1ve	approach	whereby	first	approxima1ons	and	feedback	from	run1me	profiling	is	used	to	
tune	 the	quantum	 size	un1l	 a	 bePer	 value	 is	 obtained.	Note	however	 that	 these	 values	 also	
depend	 on	 the	 other	 applica1ons	 being	 executed	 and	 hence	 op1mal	 values	 can	 fluctuate	 at	
run1me.	

In	 an	experimental	 set-up	using	 the	 Intel	 experimental	 48-core	 SCC	 chip,	 the	 communica1on	
latency	 and	 bandwidth	were	measured	 using	 VirtuosoNext.	 The	 results	were	 compared	with	
the	Texas	Instruments	8-core	C6678	DSP.	While	both	processors	target	different	applica1ons,	it	
is	 clear	 that	 the	addi1onal	wait	 states	and	 shared	communica1on	 infrastructure	are	 the	 root	
cause	of	an	 important	communica1on	boPle	neck.	This	 is	 in	par1cular	 true	 for	 the	 Intel	 chip	
whereas	the	C6678	has	much	bePer	support	for	on-	and	off-chip	data	moving	(using	separate	
busses,	DMA	engines	and	local	caches	that	can	be	locked	to	act	like	zero	wait	state	SRAM.	The	
interested	reader	can	consult	the	paper	[14]			

5.4. Maintaining	maximum	QoS	by	 graceful	degradation	 and	recovery	
The	 next	 problem	 to	 tackle	 is	to	 define	scheduling	 strategies	that	 allow	to	 keep	a	maximum	
of	QoS	 when	 faults	 occur	 whereby	 resources	 become	 depleted.	 This	 is	 complex	 because	
the	 decisions	 must	be	 swiXly	taken,	 oXen	 based	 on	 incomplete	informa1on.	We	 can	 define	
following	 rules	 (amongst	others):	

• Applica1ons	with	QoS	 level	 N	 have	 priority	 over	 applica1ons	with	 a	QoS	 level	 lower	
than	N.	

• QoS-3	 requires	redundancy.	

• QoS-2	must	have	an	abort	mechanism	for	safely	releasing	resources.	

• If	 the	 fault	is	intermiPent,	then	recovery	can	be	aPempted.	

In	this	scheme,	the	scheduler	must	be	guaranteed	to	always	have	enough	resources	to	exercise	
control	 over	 the	 applica1ons.	 If	 not,	 a	 clearing	 of	 the	 faulty	 state	 and	 reini1alisa1on	 of	 the	
failing	system	unit	is	oXen	the	only	op1on.	Note	that	this	scheme	also	generates	a	requirement	
for	 the	 inter-node	 interac1ons.	 They	 must	 exhibit	 the	 same	 QoS	 level	 as	 the	 highest	 level	
needed	for	the	RTOS	scheduler.  

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	27

6. Hard	real-time	and	 caching	on	advanced	multi-core	 chips	

6.1. Effects	of	caching	on	predictable	timings	
A	 side-effect	 of	 the	 very	 1ght	 integra1on	 of	 components	 on	 a	 single	 chip	 is	 that	 scheduling	
becomes	 increasingly	 less	predictable.	 This	 is	 largely	due	 to	 the	mismatch	between	 the	CPU	
clock	 speed,	 the	 speed	 of	 the	 external	 memory	 and	 the	 arbitra1ng	 logic	 that	 manages	 the	
peripherals.	 The	 total	 memory	 oXen	 needs	 to	 be	 large	 as	 available	 processing	 speed	 oXen	
grows	 in	 line	with	the	code	size	and	the	data	to	be	processed.	The	 industry	has	adopted	two	
main	 approaches	 to	 tackle	 this	 issue.	 The	most	 obvious	 one	 is	 to	 allow	more	 computa1onal	
concurrency	 so	 that	 the	 scheduler	 can	 switch	 to	 another	 context	 while	 the	 communica1on	
happens.	 In	 the	 ideal	case	 this	 requires	 the	use	of	DMA	engines	and	a	 fast	context	switching	
support.	 The	most	 oXen	 used	 technique	 is	 to	 use	 small	 (by	 technological	 necessity)	 but	 fast	
internal	 caches.	 When	 code	 and	 data	 are	 in	 the	 cache	 close	 to	 maximum	 performance	 is	
obtained,	but	as	caches	are	limited	in	size,	this	is	not	guaranteed	all	the	1me.	When	code	and	
data	are	not	in	the	cache,	devia1ons	of	a	factor	20	to	100	are	not	uncommon.		

Figure	8	Freescale	PowerPC	744X	block	diagram	

The	following	graph	shows	interrupt	latency	measurements	on	a	1	GHz	PowerPC	(e600	family),	
whereby	 for	 the	 sake	 of	 the	 measurements	 the	 cache	 is	 periodically	 flushed.	 The	
measurements	 were	 taken	 by	 se�ng	 a	 hardware	 1mer	 that	 periodically	 interrupts	 the	
processor	with	stress	loading	the	CPU	using	a	semaphore	loop	(which	has	very	low	processing	
load	but	 invokes	constantly	context	 switches).	 	The	1me	taken	 to	 read	 the	1mer	value	 in	 the	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	28

ISR,	subsequently	in	a	wai1ng	task	is	recorded.	This	1me	interval	is	called	the	interrupt	latency.	
Four	cases	were	measured	and	ploPed	(logarithmic	scale):	

• All	caching	disabled.	

• L1	Data	cache	and	L2	cache	enabled.	

• L2	and	L1	data	and	program	cache	enabled.	

• L2	and	L1	cache	enabled,	but	the	caches	are	periodically	flushed.	

The	first	observa1on	 to	make	 is	 that	 the	enabling	of	 the	 caches	has	a	 serious	 impact	on	 the	
performance.	When	all	caches	are	enabled,	the	performance	gain	is	about	a	factor	of	50.	This	is	
mainly	due	to	the	access	speed	to	the	external	memory.	On	the	other	hand,	the	cache	flushing	
has	 less	 impact	than	one	would	expect.	This	 is	due	to	the	architectural	 implementa1on	of	the	
cache	 logic	 whereby	 a	 complete	 cashline	 (32	 bytes)	 is	 cashed	whenever	 non-cached	 data	 or	
code	 is	 accessed.	 Hence,	 this	 mechanism	 mi1gates	 the	 effect	 although	 we	 s1ll	 see	 that	
interrupt	latencies	jump	with	a	factor	5	(but	way	below	the	values	with	no	caching).	

This	was	confirmed	by	execu1ng	a	few	measurements	using	the	on-chip	performance	monitor	
unit.	This	unit	allows	measuring	the	1me	more	accurately	and	also	records	instruc1on	and	data	
caches	misses.	

• Ten	 data	 accesses	 (read	 opera1ons)	 from	 consecu1ve	 memory	 loca1ons	 take	 122	
instruc1ons	executed	in	167	CPU	cycles	when	caches	are	enabled.	

• Ten	 data	 accesses	 from	 non-consecu1ve	 loca1ons	 takes	 140	 instruc1ons	 executed	 in	
8959	cycles	when	both	caches	are	disabled.	

• Ten	 data	 accesses	 from	 non-consecu1ve	 loca1ons	 takes	 137	 instruc1ons	 executed	 in	
1234	cycles	when	all	caches	are	fully	enabled.	

We	no1ced	that	even	the	hardware	based	performance	monitor	recorded	erra1c	results	for	the	

number	 of	 instruc1ons	 but	 also	 for	 e.g.	 instruc1on	misses,	while	 the	 code	 easily	 fiPed	 in	 L1	
cache	and	no	other	soXware	was	loaded.	This	sta1s1cal	spread	would	be	worse	when	mul1ple	
cores	share	the	same	memory	and	mul1ple	peripheral	devices	are	ac1ve.	This	spread	cannot	be	
mi1gated	unless	one	changes	the	hardware	architecture.	Hence	a	more	sta1s1cal	approach	to	
QoS	scheduling	is	needed	as	well.	

	

Next	 a	 measurement	 was	 done	 using	 task	 interac1on	 using	 RTOS	 kernel	 services.	 The	 test	
program	is	like	in	Figure	10	whereby	each	test	used	a	different	type	of	VirtuosoNext	hub	(port,	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	29

Figure	9	Interrupt	latency	to	ISR	and	task	level	on	a	1	GHz	PowerPC	(logarithmic	scale)

Figure	9	Semaphore	example	used	for	benchmarking

event,	 semaphore,	fifo),	once	with	a	1024	bytes	datatransfer	and	once	with	no	data	 transfer.		
The	1mings	are	in	microseconds	and	averaged	over	1000	loops	with	2	tasks	using	the	service.	
Hence,	each	loop	consists	of	4	task	switches	and	4	task-to	kernel	 interac1ons.	

Table	1	Loop	times	for	different	caches	setting	and	hub	services	(in	microseconds)	

What	we	can	no1ce	is	that	the	impact	of	code	or	data	not	being	in	cache	is	quite	drama1c	for	
the	temporal	behaviour.	The	difference	ranges	from	a	factor	of	about	30	to	about	130.	This	 is	
not	 only	 the	 impact	 of	 the	 slow	 external	 memory	 (133	 MHz	 SDRAM)	 but	 also	 due	 to	 the	
presence	 of	 an	 on-board	 controller	 that	 arbitrates	 in	 a	 round-robin	 fashion	 between	 the	
external	peripherals,	 the	processor	and	the	memory.	 	The	 laPer	 is	an	 important	observa1on.	
Worst	Case	Execu1on	Times	are	oXen	determined	by	using	a	detailed	simula1on	model	of	the	

Data		

size

InteracDon	type Caches	
disabled

L2	
enabled

L1	data	
cache	
and	L2	
enabled

L1	data	and	
program	
and	L2	
enabled

1024 Port 1333 341 73.5 10.9

Event 216 102 15.0 3.97

Semaphore 216 102 15.1 3.97

Fifo 1844 551 103 14.4

0 Port 215 103 15.0 3.98

Event 213 101 14.9 3.97

Semaphore 213 101 14.9 3.95

Fifo 216 103 15.2 4.07

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	30

processor.	While	the	CPUs	themselves	are	becoming	very	complex,	using	every	trick	to	provide	
higher	 peak	 performance,	 the	 integra1on	 of	 peripherals	 on	 the	 chip	 make	 that	 almost	
impossible,	partly	because	the	details	of	the	design	are	not	known.	In	addi1on,	the	processor	
(or	rather	the	chip)	will	be	 integrated	with	other	chips	on	a	board,	oXen	arbitra1ng	between	
the	processor	chip,	on-board	external	memory	and	external	peripherals	at	a	slower	clock	speed	
than	the	 internal	clock	of	 the	processor	chip.	OXen	this	will	 include	undocumented	firmware	
(e.g.	in	ASICs	or	FPGA).	Hence,	not	only	are	worst	case	1mings	now	difficult	to	predict,	they	also	
are	 board	 and	 applica1on	 specific.	 In	 the	measurements	 above,	 worst	 case	 1mings	 for	 task	
latency	were	obtained	of	more	than	200	microseconds	(no	caching)	versus	4	microseconds	(all	
caching	enabled).		These	200	microseconds	were	based	on	1000	samples	and	is	likely	s1ll	below	

the	 real	 worst	 case	 1ming	 if	 a	 prolonged	 test	 would	 be	 executed	 in	 the	 context	 of	 a	 real	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	31

applica1on.	To	mi1gate	this	risk,	it	is	clear	that	a	sta1c	design	is	no	longer	adequate	and	more	

sta1s1cal	approach	must	be	taken.	

As	 a	 summary,	 the	 ISR	 and	 task	 interrupt	 latencies	 were	 ploPed	 on	 single	 graphs	 with	 the	
different	cache	modes	enabled.	Note	that	the	ver1cal	axes	are	logarithmically	scaled.	

These	graphs	clearly	show	that	the	caches	reduce	the	absolute	interrupt	latencies,	but	also	the	
sta1s1cal	spread,	although	the	first	sample	measurement	 is	always	5	to	10	1mes	 longer	than	
the	subsequent	measurements	(as	we	no1ced	in	the	1me	series	when	caches	are	flushed).				

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	32

Figure	12	Interupt	to	task	latency

Figure	11	Interrupt	to	ISR	latency

6.2. QoS	and	ARRL	
While	 we	 expressed	 QoS	 as	 an	 applica1on	 level	
property,	it	was	oXen	linked	with	the	capability	to	
meet	 real-1me	 deadlines,	 oXen	 associated	 with	
the	 safety	 proper1es	 of	 a	 system.	 These	 safety	
proper1es	 are	 expressed	 as	 SIL	 levels	 (Safety	
Integrity	Levels)	[13].	These	SIL	levels	express	that	
the	 system	 design	 has	 dras1cally	 reduced	 the	
probability	of	residual	errors	resul1ng	in	poten1al	
hazards	 (whereby	 people	 can	 become	 hurt	 of	
killed).	 In	 this	 sense,	 QoS	 is	 a	 broader	 concept	
that	 encompasses	 safety	 issues	 besides	 other	
issues	 like	 security	 and	 availability	 of	 service.	 As	
we	outlined,	reaching	a	certain	QoS	level	requires	
an	 approach	 on	 several	 fronts,	 oXen	 at	 the	
func1onal	or	development	process	level.	Hence,	it	
makes	sense	to	develop	a	classifica1on	that	gives	
us	the	requirements	that	must	be	met	to	reach	a	certain	QoS	level.	We	called	this	the	Assured	
Reliability	and	Resilience	Levels	or	ARRL	for	short.	There	are	defined	as	follows:	

• ARRL-0:	Nothing	is	guaranteed	(”use	 as	 is”).	

• ARRL-1:	 The	 func1onality	 is	 guaranteed	 as	 far	 as	 it	 was	 tested.	 This	 leaves	 the	
untested	cases	 as	 a	 poten1al	 domain	of	errors.	

• ARRL-2:	 The	 func1onality	 is	 guaranteed	 in	 all	 cases	 as	 far	 as	 no	 fault	 occurs.	 This	
requires	 formal	 evidence	 covering	 all	 system	
states.	

• ARRL-3:	 The	 func1onality	 is	 fail-safe	 (errors	
are	 not	 propagated)	or	 switches	to	 a	 reduced	
opera1onal	 mode	 upon	 a	 fault.	 The	 fault	
behavior	 is	 predictable	 as	 well	 as	 the	 next	
state	 a6er	 the	 fault.	 This	 means	 that	 fault	
modes	 are	 part	 of	 the	 ini1al	 design	
specifica1ons.	 This	 requires	 fault	 detec1on	
mechanisms	 as	 well	monitoring	 so	 that	errors	
are	 contained	and	 the	 system	 can	 be	brought	
into	 a	 controlled	state	again.	

• ARRL-4:	 If	 a	 ma jor	 fault	 occurs,	 the	
funcDonality	 is	 maintained	 and	the	system	is	
degraded	 to	 the	ARRL-3	 level.	 Transient	 faults	
are	 masked	 out.	 This	 requires	 redundancy,	
e.g.	 TMR	(Triple	 Modular	Redundancy).	

• ARRL-5:	 	 T o 	 cope	 with	 residual	 common	
mode	 failures,	the	TMR	is	 implemented	using	
heterogeneous	redundancy.			

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	33

re·sil·ience

Definition
of RESILIENCE

1: the capability of a
strained body to recover
its size and shape
after deformation caused
especially by compressive
stress

2: an ability to recover
from or adjust easily to

re·li·abil·i·ty	

Definition
of RELIABILITY

1: the quality or state of
being reliable

2: the extent to which an
experiment, test, or measuring
procedure yields the same
results on repeated trials

http://www.merriam-webster.com/dictionary/deformation
http://www.merriam-webster.com/dictionary/reliable
http://www.merriam-webster.com/dictionary/reliable
http://www.merriam-webster.com/dictionary/deformation

When	 comparing	 with	 the	 QoS	 levels,	 one	 can	 see	
that	 a	 component	 or	 system	 must	 meet	 minimum	
levels	 of	 ARRL	 to	 enable	 a	 minimum	 QoS	 level	
whereby	we	consider	 resource	 exhaus1on	as	 a	 fault.	

• QoS-1	 requires	a	 minimum	of	ARRL-2	

• QoS-2	 requires	a	 minimum	of	ARRL-3	

• QoS-3	 requires	a	 minimum	of	ARRL-4.	

Hence,	 the	 ARRL	 levels	allow	us	 to	 define	 rules	 and	
requirements	 that	 components	 must	 be	 met	 in	
order	 to	 be	 usable	 for	 mee1ng	 a	 specified	 QoS	
level.	

The	 implicaDons:	

Current	 single	 chip	 designs	 have	 shared	 resources,	
hence	 only	 ARRL-3	 can	 be	 reached,	 whereas	 to	
reach	 ARRL-4	 and	 ARRL-5,	 each	 processor	 must	
have	 a	 dedicated	 set	 of	 resources	 (CPU,	 memory,	
power,	 ...).	 ARRL-4	 or	 ARRL-5	 level	 must	 also	 be	
reached	 for	 the	 inter	 node	 communica1on	
mechanism.  

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	34

safety-
critical system definition

 
A computer, electronic or
electromechanical system
whose failure may
cause injury
or death to human beings

E.g. an aircraft or nuclear
power station.

Common tools used in
the design of safety
critical systems are
redundancy and formal
methods.

http://dictionary.reference.com/browse/redundancy
http://dictionary.reference.com/browse/formal%2520methods
http://dictionary.reference.com/browse/formal%2520methods
http://dictionary.reference.com/browse/redundancy
http://dictionary.reference.com/browse/formal%2520methods
http://dictionary.reference.com/browse/formal%2520methods

7. Partitioning	and	separation	of	concerns	for	embedded	real-time	

Many	embedded	applica1ons,	specifically	safety-cri1cal	ones,	have	strict	real-1me	constraints.	
In	 the	 very	worst	 case,	missing	 a	 deadline	 can	 be	 catastrophic.	 Therefore,	many	 approaches	
have	been	developed	and	successfully	deployed	whereby	1me	is	explicitly	used	to	schedule	the	
applica1on	 tasks.	 A	 very	 important	 design	 parameter	 is	 a	 guaranteed	Worst	 Case	 Execu1on	
Time	 (WCET).	 While	 this	 approach	 can	 be	 jus1fied	 partly	 for	 historical	 reasons	 but	 also	 for	
reasons	of	 simplicity,	modern	many-core	processors	 pose	 a	 significant	 challenge	 as	 the	 chips	
combine	mul1ple	1ghtly	 coupled	processing	 cores,	 fast	 caches	 to	alleviate	 slow	memory	and	
complex	 peripherals.	 All	 these	 elements	 result	 in	 a	 sta1s1cal	 execu1on	 behavior	 whereby	 a	
measure	like	WCET	is	no	longer	prac1cal.	In	this	paper	we	advocate	that	this	situa1on	requires	
a	different	approach	to	programming,	i.e.	one	based	on	events	and	concurrency	with	1me	no	
longer	being	a	strict	design	parameter	but	rather	a	consequence	of	the	program	execu1on.	It	is	
a	 consequence	 of	 applying	 a	 separa1on	 of	 concerns	 to	 execu1on	 in	 space	 and	 1me.	
Benchmarks	obtained	with	the	latest	version	of	VirtuosoNext	Designer,	a	fine-grain	par11oning	
mul1-core	RTOS,	 illustrate	 that	 this	 is	 not	 only	 feasible	 but	 also	with	 no	 compromise	 on	 the	
real-1me	behavior.	

7.1.What	does``real-time''	mean?	
Similarly	to	the	term	``priority''	the	term	``real-1me''	has	for	decades	been	extensively	used	in	
the	embedded	domain,	yet	 it	 is	s1ll	oXen	a	misunderstood	one.	The	rigorous	defini1on	is	the	
one	of	 "hard	 real-1me",	 i.e.	 the	guarantee	 that	no	 specified	deadline	will	 ever	be	missed.	 In	
contrast,	``soX	real-1me''	is	meant	to	indicate	that	it	is	sufficient	to	meet	the	deadlines	most	of	
the	 1me,	 with	 occasional	 misses	 being	 acceptable	 (which	 implies	 that	 burst	 misses	 are	 not	
acceptable).	

This	defini1on	is	already	an	indica1on	that	mee1ng	a	deadline	is	not	only	a	maPer	of	execu1ng	
the	cri1cal	code	before	the	deadline	is	reached.	There	can	be	mul1ple	reasons	why	this	can	fail.	
Programming	errors,	run1me	errors,	but	also	the	hardware	behavior	 influences	the	execu1on	
of	the	cri1cal	code.	What's	important	is	that	the	execu1on	is	predictable	and	trustworthy.	For	
the	sake	of	argument,	let's	assume	that	the	code	has	been	proven	correct,	i.e.	formally	verified.	
This	leaves	only	the	hardware	or	the	environment	as	sources	of	devia1ng	behavior	in	1me.	

Coming	back	to	the	requirement	of	correctness,	in	general	the	programming	logic	will	be	1me	
independent.	The	 same	program	code	can	 run	on	any	processor	being	clocked	at	any	 speed.	
Time	enters	as	a	design	constraint.	

7.2.What	does	``priority''	mean?	
While	simple	embedded	applica1ons	processing	an	input	to	generate	a	single	output	can	oXen	
be	 programmed	 as	 a	 simple	 loop,	 scaling	 it	 up	 to	 a	 so-called	 superloop	 to	 handle	 mul1ple	
events	with	mul1ple	outputs,	oXen	execu1ng	at	different	rates,	is	not	only	tricky,	it	is	not	very	
resilient.	If	one	of	the	subloops	has	an	issue,	the	whole	applica1on	is	jeopardized.	

Time	based	scheduling	 improves	on	 the	superloop	approach	by	having	a	programmable	1me	
base	 that	 triggers	 the	 execu1on	 of	 the	 different	 func1ons.	 This	 approach	 can	 be	 very	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	35

predictable	and	is	rela1vely	easy	to	verify,	but	it	is	not	very	flexible	as	any	change	can	have	an	
impact	on	the	complete	1me	schedule.	

Flexibility	 and	 modularity	 was	 introduced	 by	 using	 a	 more	 dynamic	 approach	 ,	 e.g.	 by	
introducing	 coopera1ve	 (oXen	 round-robin	 or	 1me-sliced)	 scheduling.	 The	 best	 approach	
however	 is	priority	based	preemp1ve	scheduling.	Using	Rate	or	Deadline	Monotonic	Analysis	
[7,	11,	15]		one		can	prove	that	no	deadlines	will	be	missed,	provided	a	maximum	CPU	workload	
is	respected	(typically	about	70	percent,	but	it	can	be	higher),	if	all	tasks	are	independent	and	if	
they	 are	 scheduled	 in	 order	 of	 priority	with	 the	 priority	 being	 assigned	 as	 a	 func1on	 of	 the	
execu1on	frequency.	This	is	the	classical	defini1on	of	priority	based	scheduling	in	the	context	of	
embedded	 real-1me.	Of	 course,	 in	 prac1ce	 tasks	 are	 seldom	 independent	 (as	 they	 exchange	
informa1on)	but	it	works	very	well	 in	prac1ce.	This	being	said,	some	people	associate	priority	
with	``urgency''	(as	in	a	``high	priority	message'')	but	it	should	be	clear	that	this	intui1ve	no1on	
entails	manually	changing	the	execu1on	schedule	and	hence,	it	can	have	undesired	side-effects.	
An	important	aspect	of	priority	based	scheduling	is	that	it	decouples	the	processing	logic	from	
the	processors	it	executes	on.	If	the	priori1es	are	correctly	assigned	and	if	the	maximum	CPU	
load	is	observed	as	a	constraint,	then	no	deadline	will	be	missed	as	a	consequence.		

7.3.Real-time	and	priority	on	modern	multi-core	SoCs	
Classical	1me	based	 scheduling	 is	based	on	knowing	 the	WCET.	As	no	execu1on	1me	can	be	
longer	than	the	WCET,	a	schedule	can	be	calculated.	Hence,	the	ques1on	is	how	to	obtain	the	
WCET.	Tradi1onally,	one	can	simply	execute	the	program	in	a	loop	and	measure	it.	The	issue	is	
that	this	is	like	tes1ng.	How	do	we	know	we	measured	the	real	WCET	or	was	it	a	measurement	
that	is	s1ll	below	the	WCET?	Another	approach	is	to	use	a	very	detailed	simula1on	model	of	the	
hardware.	The	ques1on	remains	essen1ally	the	same.	Is	it	the	real	WCET	or	the	best	es1mate	
of	it?	

On	modern	SoCs,	this	is	prac1cally	elusive.	Modern	SoCs	can	have	1000's	of	interrupt	sources,	
I/O	logic	of	various	complexity,	can	have	mul1ple	shared	buses,	DMA	engines,	mul1ple	memory	
banks	 and	mul1ple	 processing	 cores.	 The	 best	 performance	 is	 obtained	 by	 using	 the	 caches	
(who's	 behavior	 is	 very	 hard	 to	 model)	 but	 as	 they	 are	 small,	 a	 cache	 miss	 is	 not	 unlikely	
whereas	external	memory	oXen	will	be	a	factor	10	or	more	slower	than	the	CPU.	As	a	result,	
WCET	measurements	are	always	a	worst	case	es1mate	and	unfortunately,	they	can	easily	be	a	
factor	100	worse	than	the	average	execu1on	1mes.	In	addi1on,	same	changes	to	the	code	will	
result	 in	small	changes	to	the	execu1on	1me.	While	safety	cri1cal	systems	designs	freeze	the	
code	once	it	has	been	approved,	it	also	means	that	a	single	change	can	result	in	expensive	re-
valida1on	and	 tes1ng,	even	 if	 the	change	 is	 small	and	 it	effects	are	well	 isolated.	This	makes	
using	WCETs	 imprac1cal,	 at	 least	 on	GHz	modern	 processors.	 Paradoxically,	 hard	 real-1me	 is	
much	easier	on	much	slower	MHz	microcontrollers.	

From	above,	the	reader	should	have	become	aware	that	dynamic	scheduling	was	introduced	to	
handle	 the	 complexity	 of	 handling	 mul1ple	 events	 with	 poten1ally	 very	 different	 1ming	
constraints.	 By	 introducing	 tasks	 as	 independent	 execu1on	 units	 (basically,	 a	 func1on	with	 a	
private	workspace),	we	have	raised	the	level	of	abstrac1on.	By	using	priority	to	determine	the	
order	 of	 execu1on	 at	 run1me,	 we	 have	 decoupled	 the	 logical	 behavior	 from	 the	 1ming	
proper1es	of	the	underlying	hardware.	The	resul1ng	execu1on	profile	is	an	event-driven	par1al	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	36

order	 in	1me,	not	a	 strict	order	 in	1me.	 In	prac1ce,	 tasks	do	not	execute	 independently	and	
therefore	RTOSes	are	used	not	only	to	provide	priority	based	scheduling	but	also	to	provide	the	
synchroniza1on	 and	 communica1on	 services.	 This	 also	 means	 that	 the	 RTOS	 itself	 must	 be	
designed	so	that	the	real-1me	behavior	is	always	guaranteed.	

7.4.When	is	an	RTOS	really	real-time?	
In	 order	 to	 provide	 its	 services	 to	 the	 applica1on	 tasks	 in	 a	 way	 that	 meets	 real-1me	
requirements,	a	RTOS	kernel	typically	has	to	implement	the	following	func1ons:	

• 	 A	 context	 switch.	 On	 modern	 processors	 the	 context	 can	 be	 extensive	 (100's	 of	
registers	not	just	covering	the	CPU	registers	but	also	a	myriad	of	status	registers	of	on-
chip	resources	such	as	the	MMU).	The	larger	it	is,	the	higher	the	latency	to	switch	from	
one	task	to	another.	

• 	 Interrupt	 handling.	 On	modern	 processors,	 interrupt	 handlers	 can	 be	 very	 complex	
with	poten1ally	 tens	of	 interrupts	arriving	quasi	simultaneously.	Handling	 in	order	of	
priority	 is	 possible	 if	 the	 hardware	 has	 provisions.	 The	 need	 to	 disable	 interrupts	 in	
cri1cal	code	sec1ons	has	an	impact	on	the	system	latency.		

• 	Implemen1ng	memory	management	and	protec1on.	This	can	considerably	impact	on	
the	context	switch	1mes.	

• Handling	 caches.	 Especially	 when	 dealing	 with	 peripherals,	 cache	 flushing	 might	 be	
needed.	This	can	considerably	increase	the	execu1on	1me.	

• 	RTOS	Kernel	services.	These	services	allow	tasks	to	synchronize	and	to	communicate.	
To	safeguard	the	real-1me	behavior,	this	should	happen	in	order	of	priority,	so	that	no	
higher	priority	task	is	kept	wai1ng	by	lower	priority	tasks.	All	kernel	opera1ons	must	be	
strictly	 bounded	 in	 execu1on	 1me	 and	 being	 independent	 of	 e.g.	 the	 size	 of	 the	
system.	This	 is	 the	area	where	most	general	purpose	OS	and	even	 some	quasi-RTOS	
fail.	

• I/O	 handling.	 With	 many	 smart	 peripherals	 integrated	 on	 the	 chip	 (oXen	 as	 black	
boxes),	the	1ming	behavior	is	oXen	not	very	predictable.	

• 	Interprocessor	communica1on.	As	tasks	are	distributed	over	mul1ple	processors	(on-	
or	 off-chip),	 the	 communica1on	 can	 introduce	 a	 serious	 latency.	 Any	 delay	 on	 one	
processing	node	can	delay	the	execu1on	of	a	task	on	another	node.	

• Respect	 the	 inherent	 priority	 levels	 of	 a	 real-1me	 applica1on,	 star1ng	 from	 the	
hardware	 (being	 clocked	 synchronously,	 it	 can	 never	 be	 made	 to	 wait).	 In	 order	 of	
priority	(hence	in	1me),	interrupts	must	be	handled	first	and	interrupt	servicing	must	
be	 kept	 as	 short	 as	 possible.	 The	 kernel	 task	 and	 its	 scheduler	 as	well	 as	 the	 driver	
tasks	 are	 the	 next	 priority	 level	 because	 any	 delay	 at	 this	 level,	will	 result	 in	 a	 later	
execu1on	 of	 the	 applica1on	 tasks.	 And	 finally,	 the	 applica1on	 tasks.	 These	 levels	 of	
priority,	oXen	go	hand	in	hand	with	typical	1me	constraints,	sub-microsecond	for	the	
interrupt	handling,		microseconds	for	the	kernel	and	driver	tasks,	tens	of	microseconds	
to	several	hundred	of	milliseconds	for	the	applica1on	tasks.		

Many	of	the	func1ons	above	entail	that	the	RTOS	kernel	keeps	track	of	wai1ng	lists.	A	real	real-
1me	RTOS	 kernel	will	 guarantee	 that	 this	wai1ng	 behavior	 is	 strictly	 in	 order	 of	 priority	 and	
independent	of	e.g.	the	number	of	tasks	in	the	system.	This	also	applies	to	the	communica1on	
that	oXen	has	to	share	the	communica1on	medium,	hence	access	in	order	of	priority	must	be	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	37

guaranteed.	As	a	communica1on	medium	is	also	a	resource	that	must	be	shared,	packe1za1on	
is	a	must	to	limit	the	blocking	1me.	

7.5.Resource	blocking,	Priority	Inheritance	and	fairness	policies	
A	major	issue	that	haunts	real-1me	applica1ons	is	the	sharing	of	resources	or	the	presence	of	
long	cri1cal	sec1ons	(that	only	allow	one	task	at	a	1me).	Above	sec1on	has	introduced	some	of	
them	(like	e.g.	a	context	switch)	but	as	the	blocking	is	rela1vely	short,	these	are	generally	not	
considered	as	 cri1cal.	Resource	 locking	 is	 typically	needed	when	 synchronising	with	a	 slower	
peripheral	or	 to	ensure	data	 integrity.	The	 issue	 is	widely	described	 in	 the	 literature	and	was	
made	famous	by	the	Mars	Rover	reset	 issue	[16].	There	 is	no	real	solu1on	to	 it	but	generally	
speaking	 it	 requires	 a	 careful	 design	 of	 the	 applica1on	 by	minimizing	 the	 need	 for	 resource	
locking	and	by	the	availability	of	priority	inheritance	with	a	ceiling	priority	support	in	the	kernel	
scheduler.	This	reduces	the	impact	of	the	blocking	to	a	minimum	but	as	said,	it	remains	a	best	
effort	strategy.	

One	 should	 also	 note	 that	modern	mul1-core	 processors	 exhibit	 ``milder''	 forms	 of	 resource	
locking	or	at	least	they	have	func1onal	features	that	increase	the	latency.	Examples	are	shared	
memory	 (oXen	 with	 mul1ple	 wait	 states),	 the	 resul1ng	 cache	 coherency	 and	 cash	 flushing	
opera1ons	 but	 also	 the	mul1tude	 of	 interrupt	 sources	 that	 in	 the	 end	 are	 all	 pipelined	 to	 a	
single	 interrupt	 to	 the	 CPU.	 And	 last	 but	 not	 least,	 as	 processing	 chips	 became	 faster	 and	
memory	cheaper,	the	applica1ons	became	more	complex	with	more	elaborate	algorithms.	This	
can	 result	 in	 so-called	 ``greedy''	 tasks	 execu1ng	 converging	 algorithms	 that	 can	 block	 other	
tasks.	To	reduce	this	issue,	such	task	must	be	run	at	lower	priority	but	with	1me	slicing/round-
robin	scheduling	as	a	``fairness''	policy	to	avoid	blocking	other	tasks.	

7.6.Complexity	dictates	orthogonality,	for	logic	and	for	time}	
Above	 sec1ons	 should	 have	made	 it	 clear	 that	 advanced	mul1-core	 processors	 enable	more	
advanced	processing	intensive	applica1ons,	but	also	result	in	a	large	increase	in	complexity	and	
stochas1c	 execu1on.	 The	 laPer	 is	 prac1cally	 incompa1ble	 with	 keeping	 track	 of	 the	 1ming	
behavior	 in	 the	 applica1on,	 e.g.	 by	 trying	 to	 find	 a	 sta1c	 schedule.	 The	 result	 is	 a	 need	 to	
decouple	the	various	elements.	Complexity	of	the	system	state	machine	is	reduced	by	spli�ng	
it	up	 in	smaller	execu1on	units	 (hence	 introducing	a	concurrent	programming	model)	and	by	
taking	out	the	1me	dependencies	(by	using	rate	monotonic	scheduling	 	based	on	priori1es).	In	
other	words,	the	applica1on	logic	must	be	decoupled	from	the	1me	behavior.	How	do	we	then	
guarantee	deadlines?	Partly,	by	a	feasibility	analysis	based	on	average	1mings	(e.g.	obtained	on	
a	 simulator)	and	by	observing	 the	1me	behavior	 from	outside	 the	applica1on	 (read:	 tes1ng).	
What	are	the	pre-condi1ons:	the	1me-independent	logical	behavior	has	to	be	correct	and	the	
execu1on	profile	in	1me	must	have	a	narrow	enough	spread	in	1me.	

7.6.1.Can	hard-real	time	be	relaxed	without	becoming	too	soft?	
While	 some	 real-1me	 applica1ons,	 for	 example	 high	 speed	 digital	 signal	 processing	 or	 high	
speed	 control	 might	 not	 tolerate	 missing	 deadlines	 at	 all,	 many	 real-world	 applica1ons	 can	
easily	tolerate	missing	a	deadline	from	1me	to	1me.		

When	processing	signal	data	Nyquist's	 theorema	applies	and	a	good	design	will	over-sample.	
Missing	 a	 sample	or	 reading	 it	 a	bit	 later	or	 sooner	mainly	 introduces	 some	numerical	 noise	
that	is	later	on	filtered	out.	The	result	is	not	a	failure	but	a	lower	quality	level.	The	same	applies	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	38

to	applying	control	signals.	This	is	best	illustrated	by	considering	for	example	a	braking	system.	
Does	 it	maPer	 if	 the	brake	controller	applies	 the	actuator	command	a	 few	microseconds	 too	
late	 or	 too	 soon	 if	 the	 1me	 constant	 of	 the	 controlled	 system	 (due	 to	 the	 mass	 iner1a)	 is	
measured	 in	milliseconds?	 It	would	only	maPer	 if	 the	actuator	 command	went	missing	 for	 a	
few	1me	 intervals	 greater	 than	 the	1me	constants	of	 the	 controlled	 system.	Missing	a	 single	
deadline	 makes	 the	 system	 soXware	 soX	 real-1me	 for	 a	 single	 1me	 period.	 Missing	 it	 in	
consecu1ve	bursts	however	can	be	considered	a	 failure.	Most	 likely,	not	because	 the	1mings	
were	 ill	defined	or	because	of	 schedule	errors	but	because	a	deeper	 logical	error	manifested	
itself,	or	the	hardware	had	a	temporary	hick-up.	

7.6.2.If	you	can't	change	the	hardware,	adapt	the	programming	model}	
If	 execu1on	 1mes	 on	 advanced	 SoCs	 become	 stochas1c,	 what	 can	 we	 do?	 We	 adapt	 the	
programming	model.	Firstly,	execu1on	 is	not	 triggered	by	a	precisely	1med	event,	but	by	 the	
event	of	its	arrival,	which	can	be	sooner	or	later	than	the	nominal	scheduled	1me	of	the	event.	
This	is	also	consistent	with	a	hardware	reality	whereby	some	jiPer	is	always	present.	What	can	
we	do	if	that	is	not	sufficient	for	the	applica1on	requirements?	As	the	deadlines	are	present	in	
the	 I/O	domain,	one	can	s1ll	adapt	 the	peripheral	circuits.	These	can	be	very	precisely	1med	
because	the	logic	is	simple.	One	can	over-sample,	buffer	the	data	and	read	it	out	triggered	by	a	
local	precise	clock.	This	can	be	done	with	a	precision	of	nanoseconds.	

Secondly,	 connect	 the	 events	 to	 their	 corresponding	 processing	 func1ons.	 Shrink	 the	 global	
state	 machine,	 by	 decoupling	 events	 and	 processing	 func1ons	 resul1ng	 in	 smaller	 state	
machines.	They	only	share	state	informa1on	at	clearly	programmed	interac1ons,	reducing	the	
risk	of	spillover	of	state	from	one	state	machine	to	another.	The	result	 is	a	typical	concurrent	
programming	model	with	 tasks	 (some1mes	mislabeled	 as	 threads	 or	 processes).	 These	 tasks	
are	wriPen	as	much	as	possible	in	a	1me	independent	way.	Hence,	when	wriPen	in	a	portable	
programming	 language,	 they	 can	 execute	 on	 any	 target	 at	 any	 rate.	 Their	 execu1on	 in	 1me	
depends	 on	 the	 triggering	 of	 events	 (typically:	 interrupts,	 kernel	 synchroniza1on	 and	
communica1on	 services).	 Each	 task	 however	 should	 be	 computa1onally	 stable	 and	 logically	
correct.	Failing	1me	proper1es	are	not	the	result	of	a	failure	in	the	scheduling	model,	but	of	a	
logical	failure	of	the	code	(numerical	proper1es	or	state	machine	related	proper1es).	

Thirdly,	 apply	 priority	 based	 scheduling.	 The	 cri1cal	 reader	 will	 object	 that	 Rate	Monotonic	
Scheduling	 is	 not	 a	 guarantee	 because	 of	 the	 simplified	 assump1ons	 in	 the	 theory.	 This	 is	
correct.	But	it	provides	a	very	good	first	star1ng	point.	Profiling,	applying	a	sufficient	CPU	load	
and	1me	margins	as	well	as	specifying	 ``safety''	 func1ons	as	part	of	 the	applica1on	are	most	
oXen	 sufficient	 to	 handle	 the	 rare	 cases.	 If	 that	 is	 not	 sufficient	 (because	 the	 safety	
requirements	are	very	high),	then	the	only	remedy	is	to	simplify	the	design	itself,	eventually	by	
spli�ng	it	over	more	than	one	processing	node,	reducing	possible	interference	and	complexity.				

Fourthly,	verify	the	programming	logic.	Most	1me	related	failing	of	applica1ons	are	not	directly	
related	 to	 1me,	 but	 to	 how	 1me	 is	 represented	 in	 the	 soXware	 or	 by	 the	 code	 itself	 being	
erroneous.	A	typical	issue	is	that	1me	is	represented	in	the	hardware	as	a	discrete	value	limited	
integer.	 In	the	program	it	becomes	a	typed	number	that	can	be	manipulated,	resul1ng	in	e.g.	
rounding	errors,	underflow	or	overflow,	etc.	Decisions	in	the	programming	logic	can	hence	be	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	39

based	 on	 erroneous	 values,	 resul1ng	 in	 a	 failing	 program,	 especially	 with	 1me-outs	 in	
unforeseen	circumstances.	

Note	 that	 this	 model	 does	 not	 consider	 1me	 as	 a	 scheduling	 parameter	 but	 as	 an	 external	
measure	(by	using	e.g.	a	clock).	The	1me	behavior	is	the	result	of	the	programming	logic	being	
executed	on	a	given	(stochas1c)	hardware.	One	can	record	its	progress	in	1me	by	observing	the	
external	clock	but	the	clock	itself	does	not	change	the	execu1on	logic.	

Note	 that	 this	programming	model	 is	not	new.	 It	 is	 largely	what	all	RTOS	put	 forward.	 It	was	
formally	formulated	in	Process	Algebra's	like	Hoare's	CSP	[17],	later	extended	to	support	1ming	
behavior	 but	 this	 was	 not	 really	 successful.	 We	 also	 note	 that	 Leslie	 Lamport	 wrote	 about	
declaring	that	1me	doesn't	need	a	special	treatment	in	programs	[18,19,	20].	It	is	sufficient	to	
declare	a	global	variable	represen1ng	it.	

It	should	be	noted	that	some	years	ago,	asynchronous	logic	was	developed	that	exhibited	this	
approach	 even	 in	 hardware.	 This	 allows	 for	 example	 to	 change	 the	 processing	 chip	 supply	
voltage	at	run1me,	resul1ng	in	the	processor	running	slower	or	faster	but	not	failing,	without	
any	change	to	the	program	code.	While	this	technology	failed	on	the	market	(mainly	by	lack	of	
compe11ve	development	tools),	it	was	very	promising	for	resilient	processing.	

7.6.3.		Implementation	in	VirtuosoNext	
The	guidelines	outlined	in	previous	sec1ons	have	been	applied	in	the	real-1me	and	concurrent	
programming	model	of	VirtuosoNext	Designer.	A	 front	end	graphical	modeling	tool	 is	used	to	
specify	the	mul1-processing	hardware	topology	as	well	as	the	concurrent	applica1on	tasks	and	
interac1on	en11es	(called	``hubs'').	The	laPer	can	be	moved	in	the	system	by	remapping	them	
to	 a	 different	 processing	 node.	 Important	 is	 that	 from	 the	 high	 level	 descrip1on,	 code	
generators	 and	 parsers	 take	 care	 of	 genera1ng	 all	 bring-up	 code	 as	 well	 as	 all	 system	 data	
structures.	As	 this	 is	a	 compile	1me	opera1on,	 the	compiled	code	becomes	a	 sta1c	 image	 in	
memory.	The	benefit	is	a	smaller	code	size	(from	a	few	kBytes	to	about	35	kBytes	for	the	most	
complex	version)	as	well	as	a	reduc1on	of	the	error-prone	programming	as	the	developer	only	
has	to	add	the	applica1on	specific	code.	

The	architecture	of	 the	RTOS	kernel	 itself	has	a	 long	history.	The	priori1sed	packet	 switching	
architecture	was	one	of	its	original	concepts	as	it	allowed	transparent	programming	of	parallel	
processing	targets.	The	latest	versions	of	the	kernel	were	redeveloped	using	formal	techniques,	
which	resulted	in	a	dras1c	code	size	reduc1on	(a	factor	5	to	10	depending	on	the	target)	and	
the	 introduc1on	 of	 the	 generic	 Hub	 interac1on	 en1ty.	 The	 hub	 concept	 presents	 itself	 as	 a	
classical	service	to	the	programmer	(semaphores,	fifos,	etc.)	but	also	allows	to	add	very	specific	
services	like	a	proxy	hub	for	using	dedicated	on-chip	logical	units.	[1]	

While	 the	 sta1c	 memory	 model	 is	 beneficial	 for	 performance,	 bePer	 safety	 and	 security	
protec1on	is	possible	by	exploi1ng	advanced	protec1on	mechanisms	like	MMUs	and	MPUs,	as	
available	 on	 modern	 processors.	 On	 target	 processors	 that	 allow	 it,	 this	 has	 resulted	 in	 a	
specific	version	of	the	RTOS	kernel	that	isolates	each	task	as	well	as	various	memory	regions	in	
a	fully	protected	zone.	Measurements	show	that	the	resul1ng	overhead	is	very	modest	as	well	
as	in	execu1on	1me	a	well	as	in	addi1onal	code	size.	The	major	impact	is	on	the	required	data	
memory	as	the	MMU	requires	the	data	sec1ons	to	be	aligned	with	specific	minimum	 	blocks.	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	40

Priority	based	preemp1ve	scheduling	is	s1ll	used	to	achieve	(hard)	real-1me	behavior	but	with	
an	op1on	 to	assign	1me	constraints	 (earliest	 star1ng	1me,	 latest	 termina1on	1me	as	well	as	
use	of	CPU	cycles)	on	top	of	the	priority	based	scheduling.	If	these	condi1ons	are	violated	they	
are	signaled	to	the	kernel	allowing	to	recover	from	the	run-1me	faults.		

7.7.Partitioning	for	safety	and	security	
While	we	assumed	 in	 the	beginning	of	 the	paper	 that	 the	 soXware	 itself	 is	 error-free,	 it	 s1ll	
runs	on	poten1ally	failing	hardware	in	a	poten1ally	insecure	environment.	If	a	system	is	safety	
cri1cal,	the	designer	must	make	sure	 it	remains	safe	and	secure,	even	when	faults	happen	or	
when	 the	 system's	 security	 is	 breached.	 Both	 result	 in	 erroneous	 states	 of	 the	 system.	 How	
much	and	what	 type	of	measures	 the	designer	must	 take	 largely	depends	on	 the	 safety	 and	
security	risks	resul1ng	from	these	fault	or	breaches.	At	the	system	level,	we	can	consider	them	
as	failures.	

Dealing	with	such	failures	can	be	done	by	applying	redundancy	and	diversity	[22]	.	In	order	to	
bePer	u1lize	the	performance	offered	by	advanced	mul1-core	processors,	an	approach	that	is	
oXen	 taken	 is	 to	 "par11on"	 the	 soXware	 in	 space	 and	1me	on	 the	processor.	 The	 goal	 is	 to	
isolate	 the	 different	 par11ons	 so	 that	 no	 fault	 can	 propagate	 beyond	 the	 boundaries	 of	 its	
allocated	par11on	and	jeopardize	the	soXware	execu1ng	in	another	par11on.	It	must	be	noted	
that	such	par11oning	 is	only	possible	on	processors	with	the	right	hardware	support,	such	as	
MPUs,	MMUs	and	reprogrammable	1mers.	

The	principles	of	space	and	1me	par11oning	are	outlined	below	followed	by	a	novel	fine	grain	
par11oning	approach	implemented	in	VirtuosoNext	without	jeopardizing	the	real-1me	support,	
as	evidenced	in	sec1on	\ref{sec1on:benchmarks}.	

7.7.1.Space	Partitioning	
The	standard	approach	for	space	par11oning	is	derived	from	the	hypervisor	approach,	ini1ally	
developed	 on	 server	 systems	 allowing	 to	 run	 mul1ple	 server	 applica1ons	 (e.g.	 webservers)	
interleaved	 in	 1me,	 which	 each	 applica1on	 running	 on	 top	 of	 a	 virtual	machine	 (isolated	 in	
space	by	using	the	protec1on	offered	by	the	MMU).	This	approach	typically	1meslices	between	
the	different	applica1ons	but	seriously	impacts	on	the	real-1me	response.	

In	VirtuosoNext,	each	task	runs	in	 its	own	memory	space,	also	protected	by	the	MMU,	but	 in	
order	 of	 its	 priority.	 This	 fine-grain	 task	 level	 space	 par11oning	 compared	 to	 the	 process	 or	
applica1on	level	space	par11oning	above	has	the	advantage	that	it	allows	a	much	finer	level	of	
par11oning	which	can	be	as	small	as	a	single	line	of	code,	but	typically	the	func1on	providing	
the	 task	 entry	 point,	 without	 jeopardizing	 the	 real-1me	 capability,	 an	 issue	 that	 tradi1onal	
hypervisor	 type	 approaches	 have.	 In	 process	 level	 space	 par11oning	 the	 data	 of	 individual	
threads	of	a	process	are	shared,	which	means	they	can	corrupt	each	others	data.	This	is	not	the	
case	when	using	the	fine	grain	par11oning	support	of	VirtuosoNext,	whereby	each	task	runs	in	
User-Mode	and	is	only	permiPed	to	access	its	own	memory	(allocated	at	compile	1me),	as	well	
as	explicitly	shared	memory	in	the	form	of	global	variables.	This	also	prevents	direct	access	to	
the	 underlying	 hardware	 for	 which	 the	 applica1on	 task	 can	 call	 the	 trusted	 services	 of	 the	
underlying	RTOS	kernel	and	its	driver	layer.	As	in	VirtuosoNext	device	drivers	are	implemented	
as	tasks,	the	user	can	also	develop	them	in	Supervisor-mode.	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	41

With	VirtuosoNext	the	applica1on	 is	now	split	explicitly	between	a	trusted	and	a	non-trusted	
zone.	The	trusted	zone	contains	the	qualified	kernel	task	and	the	driver	 layers.	The	untrusted	
zone	contains	the	applica1on	tasks	that	can	use	the	services	provided	by	the	trusted	zone.	 In	
this	case	the	kernel	task	can	be	fully	trusted	as	it	underwent	a	qualifica1on	process.	

7.7.2.Time	Partitioning	
VirtuosoNext	does	not	provide	a	classical	1me	par11oning	(read:	1me	slicing)	implementa1on	
as	seen	in	hypervisors,	 instead	like	its	predecessor	OpenComRTOS	[1]	 it	provides	system	wide	
(distributed)	priority	based	preemp1ve	scheduling	at	all	levels.	This	means	that	a	high	priority	
request	from	task	A	on	Node	1	for	a	Service	provided	at	Node	23	will	be	treated	everywhere	as	
a	high	priority	 request.	 This	means	 that	with	 the	excep1on	of	 some	memory	and	 scheduling	
overhead,	 VirtuosoNext	 provides	 the	 responsiveness	 of	 a	 tradi1onal	 RTOS,	 albeit	 in	 a	
distributed	 implementa1on	 and	 classical	 scheduling	 theories	 remain	 valid.	 Rather	 than	
alloca1ng	fixed	and	isola1ng	1me	slots	(that	put	a	serious	lower	boundary	on	the	reac1on	1me	
of	the	system),	VirtuosoNext	provides	support	for	restric1ng	the	scheduling	in	1me	of	tasks	on	
top	of	 the	priority	based	 scheduling.	 For	example,	 tasks	 can	be	defined	with	earliest	 star1ng	
1me	 and	 latest	 termina1on	 1mes	 or	 with	 a	 maximum	 CPU	 cycles	 budget.	 The	 kernel	 task	
con1nuously	 monitors	 these	 tasks	 specific	 boundary	 condi1ons.	 Note	 however,	 that	 such	
boundary	condi1ons	are	oXen	not	needed,	unless	stringent	safety	requirements	impose	them.	
The	ra1onale	for	this	statement	is	further	elaborated.	

7.7.3.Current	practice:	ARINC-653	
Commonly	 used	 Space	 and	 Time	 Par11oning	 (RT)OS	 are	 oXen	 based	 on	 the	 ARINC-653	
specifica1on.	 It	defines	a	standardised	approach	on	how	to	configure	and	specify	 the	various	
par11ons	as	well	the	interface	func1ons	on	how	to	program	applica1ons.	Most	RTOS	vendors	
offer	 a	 compliant	 implementa1on	 that	 runs	 the	 (RT)OS	 kernel	 on	 top	 of	 a	 1me-slicing	
hypervisor.	The	hypervisor	has	two	func1ons.	Firstly	it	allocates	1meslots	to	the	par11ons	and	
hence	 isolates	 the	 par11ons	 from	 each	 other	 in	 the	 1me	 domain.	 Each	 par11on	 will	 also	
execute	 in	 a	 protected	 memory	 region,	 	 hence	 isola1ng	 the	 par11ons	 in	 space.	 Inside	 a	
par11on,	the	tasks	can	be	scheduled	according	to	priority.	Secondly,	it	isolates	the	applica1on	
par11ons	 from	 the	 I/O	 domain	 by	 providing	 a	 visualiza1on	 layer.	 As	 men1oned	 before,	 the	
approach	jeopardizes	on	the	hard	real-1me	performance	because	of	the	1meslicing	(oXen	tens	
of	milliseconds)	 and	 offers	 coarse	 grain	 space	 par11oning	 (although	 on	 processors	with	 less	
sophis1cated	memory	protec1on	this	is	oXen	the	only	op1on).	In	the	next	sec1ons,	we	discuss		
some	selected	processors	and	how	VirtuosoNext	exploits	their	hardware	support	to	offer	fine-
grain	par11oning	in	combina1on	with	hard	real-1me	support.	

7.7.1.ARM-Cortex-M3	
The	ARM-Cortex-M3	[23]	 is	a	widely	used	micro	controller	architecture,	 typically	 is	clocked	at	
50	to	a	few	100	MHz.	 	It	provides	a	simple	MPU	which	allows	to	specify	8	address	regions	the	
task	running	 in	user-mode	 is	allowed	to	access.	tasks	running	 in	supervisor-mode	may	always	
access	the	whole	address	space.	At	run1me	it	is	easy	to	reconfigure	the	MPU	during	a	context	
switch.	The	downside	of	this	simple	MPU	is	that	it	requires	that	the	memory	regions	have	sizes	
of	2^n,	and	that	the	star1ng	address	is	aligned	to	the	size.	This	causes	addi1onal	complexity	
when	preparing	the	linker	script	for	an	applica1on	as	the	user	must	manually	properly	align	the	
memory	 regions.	 In	 VirtuosoNext	 we	 follow	 a	 different	 approach	 by	 linking	 the	 applica1on	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	42

twice,	the	first	1me	to	determine	the	real	size	of	the	different	regions	which	is	then	used	by	our	
Sec1on-Analyser	 tool	 to	 generate	 a	 linker	 script	 where	 the	 different	 memory	 regions	 are	
properly	aligned.		

7.7.2.ARM-Cortex-A9	
The	ARM-Cortex-A9	[24],	 in	our	case	clocked	at	700MHz,	provides	an	MMU	which	works	with	
two,	user	maintained,	page	 tables,	each	 table	 supports	a	different	page-size	 (4kB,	and	1MB).	
During	 the	 context	 switch	 the	 page	 table	 is	 updated	 to	make	 the	 pages	 of	 the	 current	 task	
inaccessible	 and	 the	 pages	 of	 the	 next	 task	 accessible.	 This	 is	 a	 computa1onally	 complex	
process	and	thus	rather	expensive.	

7.7.3.Freescale	T2080	
The	Freescale	T2080	[25]	consists	of	4	PowerPC	e6500	cores,	clocked	at	1.8GHz,	of	which	each	
provides	two	threads,	thus	the	SoC	provides	8	logical	cores.	Each	logical	core	provides	its	own	
MMU,	however		this	MMU	does	not	use	a	page	table	in	main	memory	instead	the	page	table	is	
stored	inside	the	MMU.	The	MMU	supports	pages-sizes	of	$4kB	\cdot	2^n$	Each	entry	can	be	
assigned	a	transla1on	ID	and	all	pages	must	be	aligned	to	a	4kB	boundary.	Each	MMU	entry	has	
a	14bit	Transla1on-ID	which	that	is	compared	to	the	specified	Process-ID,	limi1ng	access	to	the	
memory	 specified	 by	 the	 MMU	 entry.	 To	 properly	 align	 the	 page	 tables,	 we	 use	 a	 Sec1on	
Analyser	tool,	and	a	mul1	stage	build	process,	like	for	the	ARM-Cortex-M3.	A	Project	Generator	
assigns	 each	 task	 a	 dedicated	 Process-ID.	 The	 computa1onal	 complexity	 of	 reconfiguring	 the	
MMU	during	a	context	switch	is	 limited	to	changing	the	data	and	bss	segment	entries	for	the	
next	task,	the	overhead	being	independent	of	the	size.	

7.7.1.Texas	Instruments	TMS320C6678	
The	Texas	 Instruments	TMS320C6678	 [26]	has	8	physical	cores,	clocked	at	1.25GHz	but	 these	
provide	neither	an	MPU	nor	an	MMU.	However,	there	are	SoC-Level	MPUs	which	can	be	used	
to	 isolate	 memory	 regions	 from	 cores	 and	 peripherals	 on	 the	 SoC.	 By	 default	 every	 core	 /	
peripheral	 has	 access	 to	 the	 complete	 address	 space,	 and	 in	 the	MPUs	 one	 explicitly	 blocks	
peripherals	 from	 accessing	 a	 certain	 region.	 This	 is	 the	 opposite	 approach	 from	 the	 other	
architectures	discussed	 in	 this	paper.	Thus	on	 this	 target	 the	 isola1on	 is	only	possible	on	 the	
core	 level.	 However,	 the	 impact	 is	 minimal	 as	 this	 only	 requires	 an	 ini1al	 setup	 and	 no	
modifica1on	aXerwards.	

7.1.Benchmarks	on	single	and	multi-core	targets	
In	 this	 sec1on	 we	 give	 the	 results	 of	 the	 Semaphore	 Loop	 and	 Interrupt	 latencies	 for	 the	
different	architectures	listed	previously.	

7.1.1.Semaphore	Loop	Times	
Space	par11oning	also	affects	run1me	performance	because	the	context	of	a	task	now	includes	
also	 the	 informa1on	 about	 the	memory	 regions	 it	 is	 allowed	 to	 access.	 This	 becomes	 visible	
when	 comparing	 the	 1me	 the	 system	 takes	 to	 perform	 a	 Semaphore-Loop	 (two	 tasks,	 two	
semaphore	 Hubs	with	 one	 loop	 requiring	 eight	 context	 switches	 per	 loop).	 The	 table	 below	
gives	 the	 semaphore	 loop	 1mes	 measured	 for	 the	 different	 targets	 for	 non-par11oned	 and	
par11oned	implementa1ons,	except	for	the	C6678.	For	the	ARM-Cortex-M3	and	the	T2080	the	
enabling	space	par11oning	has	only	a	moderate	impact	of	about	10%	while	of	the	ARM-Cortex-
A9	the	space	par11oning	has	an	impact	of	about	30%.		

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	43

7.1.1.Interrupt	Handling	Latency	

In	addi1on	to	fast	context	switching	a	RTOS	must	also	be	able	to	react	predictably	and	with	very	
low	latency	to	external	events,	so	called	Interrupts.	In	the	case	of	VirtuososNext	we	define	two	
Interrupt	 Latencies	 of	 interest.	 The	 first	 one	 is	 the	 IRQ	 (Interrupt	 Request)	 to	 ISR	 (Interrupt	
Service	Rou1ne)	Latency,	the	second	is	the	IRQ	to	task	Latency.		

Note	that	the	 interrupt	 latency	 is	really	a	histogram	as	 it	depends	on	what	other	applica1ons	
are	ac1ve	on	 the	processing	node.	 To	 simulate	 such	a	 stress	paPern,	 a	 semaphore	 loop	 (see	
next	 paragraph)	 is	 scheduled	 in	 parallel	 with	 the	 interrupt	 latency	 measurement.	 The	
semaphore	 loop	 is	 a	 very	 good	 stress	 load	 as	 it	 con1nuously	 disables	 interrupts	 for	 short	
interval	when	the	Kernel	task	executes	the	semaphore	services	and	context	switches.	

With	 space	 par11oning	 enabled	 the	 IRQ	 to	 Task	 latencies,	 shown	 in	 Table	 \ref{table:irq2isr},	
generally	 increase	 between	 the	 protected	 and	 non-protected	 versions,	 especially	 the	 latency	
maximum	increases	substan1ally	due	to	the	fact	that	this	is	caused	by	disabling	interrupts	while	
performing	 a	 context	 switch.	 The	 context	 switch	 for	 the	 protected	 version	 is	 usually	 more	

Table	4	Semaphore	Loop	Times	in	microseconds

Target Non-Partioned Partitioned

ARM-Cortex-M3	
(@50MHz)

54.60 58.90

ARM-Cortex-A9	
(@700MHz)

23.65 30.39

C6678	(@1.25GHz) 2.81 n.a.

T2080	(@1.8GHz) 5.64 6.01

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	44

complex	than	for	the	non-protected	version.	Similarly,	the	IRQ	to	Task	latency	increases	when	
enabling	space	par11oning.			

Interrupt	Latency	Measurement	Applica1on	Diagram	

Interrupt	Latency	Histogram	on	Freescale	T2080	@	1.8GHz	(logarithmic	scale	

7.1.2.Code	Size	
The	fine-grain	 space	par11oning	 implementa1on	of	VirtuosoNext	 is	 lightweight	 both	 in	 code	
size	 and	 in	 run1me	 impact.	 Table	 \ref{table:codesize}	 shows	 code	 size	 of	 VirtuosoNext	
par11oned	and	non-par11oned.	The	code	sizes	were	obtained	by	building	the	same	applica1on	
using	all	available	Services	(compiled	with	Os).	We	see	that	for	the	ARM-Cortex-M3	and	ARM-
Cortex-A9	the	code	size	 increases	by	more	than	30\%	while	for	the	T2080	the	increment	 is	 in	
the	area	of	3\%.	The	reason	for	this	is	that	for	the	ARM-Cortex	pla�orms	a	new	context	switch	
had	to	be	developed	when	we	implemented	the	space-par11oning	while	for	the	T2080	almost	
the	same	context	switch	 is	used	 for	both	variants.	Note	that	 the	code	sizes	given	 include	the	
run1me	overhead	of	the	compiler	and	the	system	ini1alisa1on.	

Table	5	Minimal	and	maximal	IRQ	to	ISR	Latencies	in	nanoseconds

Target Non-Partioned Partitioned

ARM-Cortex-M3	
(@50MHz)

780	-	2500 960	-	4920

ARM-Cortex-A9	
(@700MHz)

100	-	314 138	-	1150

C6678	(@1.25GHz) 160	-	260 n.a.

T2080	(@1.8GHz) 286	-	793 286	-	819

Table	6	Minimal	and	maximal	IRQ	to	Task	Latencies	in	microseconds

Target Non-Partioned Partitioned
ARM-Cortex-M3	
(@50MHz)

15.0	-	35.0 16.0	-	39.0

ARM-Cortex-A9	
(@700MHz)

0.994	-	2.182 1.726	-	4.228

C6678	(@1.25GHz) 936 n.a.

T2080	(@1.8GHz) 2.158	-	3.705 2.262	-	3.848

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	45

Code	size	in	bytes,	non-par11oned	and	par11oned.	

7.1.3.Multi-core	SoCs,	T2080	vs	TMS320C6678}	
The	 TI-C6678	 and	 the	 Freescale	 T2080	 SoCs	 have	 both	 8	 logical	 cores.	 The	 T2080	 has	 four	
physical	cores	suppor1ng	two	threads	each,	while	the	C6678	has	8	physical	cores.	In	case	of	the	
T2080	 Each	 core	 has	 its	 private	 32kB	 L1-Data	 and	 L1-Instruc1on	 Caches,	 which	 are	 shared	
among	the	threads,	and	the	L2	Cache	is	shared	among	all	cores.	In	contrast	the	C6678	provides	
each	 core	 with	 its	 own	 L2	 cache	 of	 256kB	 which	 furthermore	 can	 be	 configured	 as	 normal	
memory.	This	seriously	reduces	the	memory	access	overhead	and	thus	improves	the	real-1me	
capability.	On	the	other	hand,	the	C6678	has	less	memory	protec1on	logic	using	a	MPU,	so	that	
the	protec1on	 is	prac1cally	 at	 the	 core	 level.	 The	T2080	offers	fine	grain	memory	protec1on	
using	its	MMU,	so	that	each	block	of	4kB	can	be	protected.	

7.1.4.The	ultimate	real-time	stress	test}	
In	order	 to	verify	 the	approach	 the	 interrupt	 latency	 test	above	was	modified	 to	use	a	1mer	
with	a	10	microseconds	periodicity.	This	results	in	a	100%	CPU	load,	taken	up	for	27.53%		by	the	
two	tasks	running	the	semaphore	loop,	the	kernel	task,	a	collector	task	and	the	1mer	ISR.	Each	
of	the	tasks	are	memory	protected.	Below	a	screenshot	of	the	Even	Tracer	shows	the	trace	data	

collected	on	 core-0,	while	 running	 the	measurement.	 The	 trace	 shows	 the	 scheduling	 of	 the	
different	tasks,	with	the	Kernel-Task	being	on	top,	as	it	has	the	highest	priority	and	the	Idle-Task	

Target Non-Partioned Partitioned

ARM-Cortex-M3	
(@50MHz)

8,656 11,564

ARM-Cortex-A9	
(@700MHz)

15,144 21,844

C6678	(@1.25GHz) 26,448 n.a.

T2080	(@1.8GHz) 37,224 38,504

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	46

at	the	boPom	due	to	it	having	the	lowest	priority.	The	measurements	show	no	degrada1on	of	
the	real-1me	performance.	

Trace	 of	 the	 Interrupt	 Latency	Measurement	 with	 a	 10	microsecond	 Ucker	 and	 a	 single	 CPU	
Semaphore	Loop.	

7.1.5.The	impact	of	multi-core	communication}	
In	an	addi1onal	stress	test,	the	semaphore	loop	was	distributed	over	two	cores	with	the	1mer	
s1ll	at	10	microseconds.	This	introduces	addi1onal	latency	and	CPU	load	due	to	the	driver	tasks	
(which	 is	 transparent	 for	 the	 applica1on	 developer).	 The	measurement	 task	 has	 the	 second	
highest	 priority	 aXer	 the	 Kernel-Task.	 The	 minimal	 latencies	 stayed	 the	 same,	 however	 the	
maximal	 IRQ	 to	 ISR	 latency	 increased	 to	 3471	 nanoseconds	 while	 the	 maximal	 IRQ	 to	 Task	
latency	increased	to	9.633	microseconds.	The	long	IRQ	to	Task	latency	can	be	explained	by	the	
fact	that	the	RX-Part	of	the	communica1on	is	handled	inside	an	ISR,	which	has	a	highest	priority	
than	the	Kernel-Task.	The	Figure	below	shows	a	representa1on	of	the	trace	data	collected	on	
core-0	and	core-2,	while	running	the	measurement.		

Trace	 of	 the	 Interrupt	 Latency	Measurement	 with	 a	 10	microsends	 1cker	 and	 a	 Semaphore	
Loop	distributed	over	core-0	and	core-2.	

7.2.Conclusions	and	recommendations	for	multi-core	SoC	design	
The	 complexity	 of	 advanced	mul1-core	 chips	was	 largely	 enabled	 by	 the	 law	 of	Moore.	 The	
result	 is	 that	 chips	 are	 a	 lot	 less	 power	 hungry	 and	 allow	 much	 higher	 performance	 and	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	47

func1onal	density.	Unfortunately,	memory	technology	and	the	peripheral	real-world	oXen	s1ll	
runs	at	a	much	slower	rate.	Hence,	caching	and	buffering	are	needed	to	reduced	the	mismatch	
in	speed.	The	result	is	complexity	and	less	predictability	in	1me,	partly	because	the	design	aims	
at	 peak	 performance	 (which	 is	 good	 for	 general	 purpose	 compu1ng),	 less	 at	 bounded	
performance	(which	is	needed	for	safety	cri1cal	applica1ons).	

The	concurrent	programming	model	that	was	put	forward	to	address	the	issues	on	the	soXware	
side	 is	 also	 applicable	 to	 the	hardware.	 If	 CPUs	 are	 decoupled	 (by	 having	 large	 enough	 local	
memory	and	caches),	the	impact	of	shared	memory	is	vastly	reduced.	Being	able	to	lock	code	in	
cache	(hence	it	acts	like	fast	SRAM),	greatly	improves	the	performance	as	well	as	the	sta1s1cal	
execu1on	spread.	A	side	conclusion	is	that	it	pays	of	to	have	a	smaller	code	size.	

One	should	also	not	be	afraid	to	use	an	heterogenous	SoC	architecture.	The	presence	of	up	to	
1000	interrupt	sources,	to	be	handled	by	a	single	CPU,	is	a	clear	indica1on	that	offloading	the	I/
O	work	to	small	peripheral	CPUs	is	beneficial	for	real-1me,	provided	the	programming	effort	is	
kept	low	by	using	a	common	high	level	API	that	 is	target	 independent.	On	the	hardware	side,	
the	effort	 should	be	 focused	on	 reducing	 the	 latency	 (introduced	by	e.g.	 complex	 set-up	and	
feature	 bloat).	 Examples	 of	 such	 heterogenous	 architectures	 are	 TI's	 OMAP	 family,	 that	
combine	DSPs,	ARM-M3	and	-A9	in	a	single	chip.	While	VirtuosoNext	support	all	target	CPUs,	it	
is	s1ll	a	serious	effort	because	of	the	complexity.		

While	 the	 tests	 have	 confirmed	 the	 wide	 variance	 in	 real-1me	 performance	 of	 different	
hardware	architectures,	we	have	also	shown	that	applying	good	design	principles	in	developing	
the	RTOS	can	largely	bridge	the	gap,	even	on	processors	that	are	less	suitable	for	real-1me.	If	
the	 measurements	 show	 that	 the	 hard	 real-1me	 constraints	 are	 difficult	 to	 sa1sfy,	 with	 a	
concurrent	 and	 portable	 programming	model,	 one	 can	 easily	 redistribute	 the	 applica1on	 or	
simply	wait	for	the	vendor	to	release	their	next	genera1on	faster	chip.	 

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	48

8. Final	conclusions	

Modern	 advanced	 many/mul1core	 chips	 introduce	 the	 need	 to	 take	 into	 account	 their	
complexity	of	shared	resources	and	their	sta1s1cal	nature	of	execu1ng	applica1ons.	This	means	
that	tradi1onal	real-1me	and	safety	thinking	(that	assumes	that	everything	is	mostly	sta1c	and	
predictable)	 is	 no	 longer	 fully	 applicable,	 unless	 the	 on-chip	 resources	 are	 seriously	 under-
u1lised.	Nevertheless,	 they	remain	a	necessary	first-order	approach	that	must	be	understood	
and	taken	into	account.		

This	publica1on	proposes	to	consider	mee1ng	real-1me	constraints	as	part	of	the	QoS	offered	
by	 an	 applica1on,	 even	 in	 the	 presence	 of	 faults.	 The	 result	 is	 a	 scheme	 whereby	 graceful	
degradaDon	is	defined	 as	a	design	requirement,	especially	in	the	presence	of	faults.		

The	design	path	to	a	working	solu1on	is	to	consider	most,	if	not	all	on-chip	shared	resources,	as	
resources	for	which	the	applica1on	func1ons	compete	at	run1me	constrained	by	their	rela1ve	
priority	derived	from	their	QoS	level.	In	this	case	we	can	reuse	the	priority	inheritance	protocol	
for	managing	access	 to	the	resources.	However,	unless	 the	chip	designers	have	taken	specific	
precau1ons,	this	means	that	for	the	higher	safety	levels	physical	par11oning	is	s1ll	a	must.	This	
publica1on	does	not	yet	present	a	complete	solu1on	on	how	to	define	the	run1me	scheduling	
and	resource	sharing	parameters	 for	a	given	applica1on.	We	envision	a	process	whereby	first	
order	 approxima1ons	 are	 derived	 from	 a	 sta1c	 approach	 with	 run1me	 profiling	 allowing	
improving	 upon	 the	 selected	 parameters.	 However,	 it	 remains	 a	 trade-off	 exercise	 as	 full	
op1misa1on	is	not	likely	due	to	the	sta1s1cal	nature	of	the	problem	domain.	

Finally,	we	have	shown	how	different	safety	integrity	levels	(SIL)	are	related	to	quality	of	service	
(QoS),	whereby	a	criterion	 (ARRL)	was	 formulated	that	components	must	meet	 to	be	used	 in	
certain	quality	of	service	levels.	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	49

9. References	

9.1. Further	reading	
1.	E.	Verhulst,	 R.T.		Boute,		J.M.S.		Faria,	 B.H.C.	Sputh,	 and	V.	Mezhuyev.		 Formal	Development	
of	 a	 Network-Centric	 RTOS.	Software	 Engineering	 for	 Reliable	Embedded	Systems.	Springer,	
Amsterdam	Netherlands,	2011.		
2.	Altreonic,	January		 2011.	hPp://www.altrenoic.com	
3.	Eric	Verhulst.		Virtuoso	 :	 providing	sub-microsecond	context	 switching	on	dspswith	a	
dedicated	 nanokernel.	 in	 interna1onal	 conference	on	 signal	processing	applica1ons	and	
technology,	santa	clara	september,	 1993.	1993.		
4.	Wikipedia.	Transputer	—	wikipedia,	the	 free	encyclopedia,	2011.	 	
5.	Inmos,	January	2011.	hPp://www.inmos.com,	 last	visited:	 20.01.2011.		
6.	C.A.R.	Hoare.	C.A.R.	Hoare.	Communica1ng	Sequen1al	Processes.	 Pren1ce-Hall,	1985.		
7.	C.	 L.	 Liu	 and	James	W.	 Layland.	 Scheduling	algorithms	 for	mul1programming	in	a	 hard-
real-1me	environment.	J.	 ACM,	 20:46–61,	 January	1973.		
8.	Loic	 P.	 Briand	and	 Daniel	 M.	 Roy.	 Mee1ng	Deadlines	in	 Hard	 Real-Time	Systems:	The	Rate	
Monotonic	Approach.	 IEEE,	 1999.		
9.	Mark	Klein,	Thomas	Ralya,	Bill	 Pollak,	Ray	 Obenza,	and	Michael	Gonzalez	Harbour.	A	
Prac11oner’s	Handbook	 for	 Real-Time	Analysis:	Guide	 to	 Rate	Monotonic	Analysis	for	 Real-
Time	 Systems.	Springer,	August	 1993.		
10.	Mast,	January	2011.	hPp://mast.unican.es,	 last	visited:	 20.01.2011.		
11.	A.	 Styenko.	Real-Time	 Systems:	Scheduling	and	Structure	Af.Sc.	Thesis.	University	 of	
Toronto,	 1985.		
12.	M.B.	 Jones.	What	really	happened	 on	 mars,	 1997.	 	
13.	IEC	 61508	 edi1on	2.0,	 2010.	[Online;	accessed	19-March-2013].		
14.	A	Formalised	Real-1me	Concurrent	Programming	Model	for	Scalable	Parallel	Programming"	
authors	Eric	Verhulst,	Bernhard	H.C.	Sputh	at	the	Workshop	on	High-performance	and	Real-
1me	Embedded	Systems(HiRES	2013)	January	23,	2013,	Berlin,	Germany.	hPp://
www.altreonic.com/content/altreonic-hires2013-workshop	
[15]	N.	C.	Audsley,	“Deadline	monotonic	scheduling,”	1990.		
[16]	P.	Risat	Mahmud,	“Mars	pathfinder:	Priority	inversion	problem,”	2014.		
[17]	C.	A.	R.	Hoare,	Communica1ng	Sequen1al	Processes.	Upper	Saddle	River,	NJ,	USA:	
Pren1ce-Hall,	Inc.,	1985.		
[18]	L.	Lamport,	“Time,	clocks,	and	the	ordering	of	events	in	a	distributed	system,”	Commun.	
ACM,	vol.	21,	no.	7,	pp.	558–565,	Jul.	1978.	[Online].	Available:	hPp://doi.acm.org/
10.1145/359545.	359563		
[19]	——,	“”some1me”	is	some1mes	”not	never”:	On	the	temporal	logic	of	programs,”	in	
Proceedings	of	the	7th	ACM	SIGPLANSIGACT	Symposium	on	Principles	of	Programming	
Languages,	ser.	
POPL	’80.	New	York,	NY,	USA:	ACM,	1980,	pp.	174–185.	[Online].	Available:	hPp://doi.acm.org/
10.1145/567446.567463		
[20]	——,	Real-Time	Model	Checking	Is	Really	Simple.	Berlin,	Heidelberg:	Springer	Berlin	
Heidelberg,	2005,	pp.	162–175.	[Online].	Available:	hPp://dx.doi.org/10.1007/11560548	14		
[21]	B.	H.	Sputh,	E.	Verhulst,	and	V.	Mezhuyev,	“OpenComRTOS:	Formally	developed	RTOS	for	
Heterogeneous	Systems,”	in	Embedded	World	Conference	2010,	Mar.	2010.		
[22]	E.	Verhulst,	B.	Sputh,	and	P.	Van	Schaik,	“An1fragility:	systems	engineering	at	its	best,”	
Journal	of	Reliable	Intelligent	Environments,	vol.	1,	no.	2,	pp.	101–121,	2015.	[Online].	
Available:	hPp://dx.doi.org/10.1007/s40860-015-0013-3		
[23]	ARM	Cortex-M3	Processor	Technical	Reference	Manual,	Revision	r2p1	ed.,	ARM,	2015.		
[24]	ARM	Cortex-A9	Processor	Technical	Reference	Manual,	Revisio	r4p1	ed.,	ARM,	2012.	
[25]	QorIQ	T2080	Reference	Manual,	NXP,	document	Number:	T2080RM	Rev.	3,	11/2016.	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	50

http://www.inmos.com
http://mast.unican.es
http://www.altreonic.com/content/altreonic-hires2013-workshop
http://www.altreonic.com/content/altreonic-hires2013-workshop
http://doi.acm.org/10.1145/359545
http://doi.acm.org/10.1145/359545
http://doi.acm.org/10.1145/567446.567463
http://doi.acm.org/10.1145/567446.567463

[26]	TMS320C6678	Mul1core	Fixed	and	Floa1ng-Point	Digital	Signal	Processor	(Rev.	C),	Texas	
Instruments,	hPp://www.1.com/lit/ds/symlink/tms320c6678.pdf.	

9.2. Acknowledgements	
While	GoedelWorks	 is	 a	 development	of	Altreonic	 Systems,	 part	 of	 the	 theore1cal	work	was	
done	in	the	following	projects:	

1. CRAFTERS.	Artemis	Project. 	ConstRaint	and	Applica1on	driven	Framework	for	Tailoring	
Embedded	Real-1me	Systems.	Project website:		hPp://www.craXers-project.org	

2. Airbus,	for	lending	us	a	PowerPC	pla�orm.	

3. EUROCPS	NoFiST	(Novel	Fine	Grain	Space	and	Time	Par11oning	for	a	Mixed	Cri1cality	
Pla�orm)	project	with	Thales	TRT.  

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	51

http://www.evolve-itea.org

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	52

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	53

What	this	booklet	is	all	about	
Developing	 real-1me	 Embedded	 Systems	 engineering	 is	 becoming	 complex	 because	we	have	
now	interconnected	target	system	with	many	processors,	oXen	of	a	different	type	that	contain	
tens	 if	not	hundreds	of	processors.	The	complexity	also	 increases	because	the	semiconductor	
developers	 can	 squeeze	more	 and	more	 on	 single	 chip.	 This	 requires	 that	 applica1ons	must	
share	the	on-chip	resources	while	the	temporal	behaviour	becomes	more	sta1s1cal	in	nature.		

While	tradi1onal	real-1me	scheduling	techniques	are	s1ll	valid,	there	is	a	need	to	shiX	towards	
a	 scheduling	 approach	 based	 on	 Quality	 of	 Service	 (QoS)	 that	 includes	 the	 capability	 to	
con1nue	 the	 processing	 for	 the	 most	 important	 applica1on	 parts	 even	 when	 some	 of	 the	
resources	fail.	By	considering	this,	we	have	entered	the	domain	of	safety	engineering	whereby	
the	ul1mate	QoS	offered	is	the	survival	of	the	system.	This	introduces	the	concept	of	Assured	
Reliability	and	Resilience	Level	 (ARRL)	 resul1ng	 in	 requirements	 to	be	met	by	components	 to	
meet	the	system	level	QoS	requirements.	

� 	 Why	real-1me?	|	Altreonic	"From	Deep	Space	to	Deep	Sea"	54

Second	publica1on	in	the	Gödel	Series:	

Systems Engineering for Smarties©

